Skip to main content
Log in

Signals in human breath related to Sarcoidosis. — Results of a feasibility study using MCC/IMS

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Using a 63Ni—Ion Mobility Spectrometer (IMS) coupled with a Multi-Capillary Column (MCC) the signals obtained are considered to identify characteristic peaks of volatile compounds in exhaled human breath samples of 10 mL volume. The breath of 20 patients with sarcoidosis and suspicion of sarcoidosis because of mediastinal lymp node enlargement was investigated. It could be shown that a procedure related to a single peak in the IMS-chromatogram delivers a differentiation into the two groups of patients with confirmed sarcoidosis and such suffering no sarcoidosis. The potential biomarker is characterised by the following parameters inverse mobility (1/K0) 0.53 ± 0.01 Vs/cm2—retention time 22 ± 5 s. These results are a first step in breath analysis by MCC/IMS in patients with sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amann A, Schmid A, Scholl-Buergi S, Telser S, Hinterhuber H (2005) Breath analysis for medical diagnosis and therapeutic monitoring. Spectrosc Eur 17:18–20

    CAS  Google Scholar 

  2. Spanel P, Dryahina K, Smith D (2007) The concentration distributions of some metabolites in the exhaled breath of young adults. J Breath Res 1:1–8

    Google Scholar 

  3. Patterson CH et al (2007) Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. J Breath Res 1:1–8

    Article  Google Scholar 

  4. Smith D, Turner C, Spanel P (2007) Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J Breath Res 1:R1–R12

    Article  Google Scholar 

  5. Spanel P, Dryahina K, Smith D (2007) Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4–83 years. J Breath Res 1:L1–L4

    Google Scholar 

  6. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18:22–27

    CAS  Google Scholar 

  7. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070

    Article  CAS  Google Scholar 

  8. Westhoff M et al (2006) Ionenmobilitätsspektrometrie—eine neue Methode zur Detektion von Bronchialkarzinomen und Atemwegsinfektionen in der Ausatemluft? Erste Resultate einer Pilotstudie. Pneumologie 60:S81

    Google Scholar 

  9. Westhoff M et al (2005) Ion mobility spectrometry: A new method for the detection of lung cancer and airway infection in exhaled air? First results of a pilot study. Chest 128:155S

    Google Scholar 

  10. Westhoff PLM, Freitag L, Ruzsanyi V, Baumbach JI (2005) Bacterial differentiation by ion mobility spectrometry: First results of a pilot study. Chest 128:375S–375S

    Google Scholar 

  11. Ruzsanyi V et al (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084:145–151

    Article  CAS  Google Scholar 

  12. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Anmann A, Smith D (eds) Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific, Singapore, pp 53–66

    Chapter  Google Scholar 

  13. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Knäblein J (ed) Modern biopharmaceuticals, vol. 3. Wiley-VCH, Weinheim, pp 1343–1358

    Chapter  Google Scholar 

  14. Bader S, Urfer W, Baumbach J (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. Int J Ion Mobility Spectrom 8:1–4

    Google Scholar 

  15. Bader S, Urfer W, Baumbach JI (2007) Reduction of ion mobility spectrometry data by clustering characteristic peak structures. J Chemom 20:128–135

    Article  Google Scholar 

  16. Baumbach J et al (2007) IMS2—An integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. J Integr Bioinformatics 4(75):71–12

    Google Scholar 

  17. Westhoff M et al (2006) Ion mobility spectrometry—a new method in the diagnostic approach to sarcoidosis? — Preliminary data. Eur Respir J 28:111S

    Google Scholar 

  18. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of Sarcoidosis: results of a feasibility study. J Physiol Pharmacol 58:739–751

    Google Scholar 

  19. Moodley YP, Chetty R, Lalloo UG (1999) Nitric oxide levels in exhaled air and inducible nitric oxide synthase immunolocalization in pulmonary sarcoidosis. Eur Respir J 14:822–827

    Article  CAS  Google Scholar 

  20. O’Donnell DM et al (1997) Exhaled nitric oxide and bronchoalveolar lavage nitrite/nitrate in active pulmonary sarcoidosis. Am J Respir Crit Care Med. 156:1892–1896

    Google Scholar 

  21. Wilsher ML, Fergusson W, Milne D, Wells AU (2005) Exhaled nitric oxide in sarcoidosis. Thorax 60:967–970

    Article  CAS  Google Scholar 

  22. Ziora D, Kaluska K, Kozielski J (2004) An increase in exhaled nitric oxide is not associated with activity in pulmonary sarcoidosis. Eur Respir J 24:609–614

    Article  CAS  Google Scholar 

  23. Ziora D, Polonska A, Kaluska K, Rozentryt P, Trzeciak P (2002) Concentration of nitric oxide in exhaled air in patients with sarcoidosis—pilot study. Pneumonol Alergol Pol 70:290–295

    CAS  Google Scholar 

  24. Kwiatkowska S, Luczynska M, Grzelewska-Rzymowska I, Nowak D, Zieba M (2005) Comparison of oxidative stress markers in exhaled breath condensate and in serum of patients with tuberculosis and sarcoidosis. Pol Merkuriusz Lek 19:37–40

    CAS  Google Scholar 

  25. Psathakis K et al (2004) 8-Isoprostane, a marker of oxidative stress, is increased in the expired breath condensate of patients with pulmonary sarcoidosis. Chest 125:1005–1011

    Article  CAS  Google Scholar 

  26. Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl Spectrosc 53:338A–355A

    Article  CAS  Google Scholar 

  27. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. Journal of Breath Research

  28. Ruzsanyi V (2005) Analyse flüchtiger Metaboliten von der Ausatemluft mittels Ionenmobilitätsspektrometer,Thesis Bio- und Chemieingenieurwesen (University Dortmund)

  29. Bader S (2008) Identification and quantification of peaks in spectrometric data faculty statistics, (Technical University of Dortmund)

  30. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS–Data. Int J Ion Mobility Spectrom 11:77–82

    Article  Google Scholar 

  31. Bödeker B, Vautz W, Baumbach JI (2008) Peak Comparison in MCC/IMS–Data–Searching for potential biomarkers in human breath data. Int J Ion Mobility Spectrom 11:89–93

    Article  Google Scholar 

  32. Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referencing in MCC/IMS—data. Int J Ion Mobility Spectrom 11:83–88

    Article  Google Scholar 

  33. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375

    Article  CAS  Google Scholar 

  34. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, vol. 1, edn. 1. CRC Press, Taylor & Francis, Boca Raton

Download references

Acknowledgements

The authors wish to thank Mrs. Stefanie Güssgen, Mrs. Barbara Obertrifter, Mrs. Lucia Seifert, Mrs. Susanne Krois and Dr. Wolfgang Vautz for their major contributions to experimental and laboratory work. The use of data obtained during the work of Dr. Vera Ruzsanyi published partly in her PhD thesis and such of Martin Meier, obtained at his stay at ISAS and lung hospital Hemer during his diploma thesis should be mentioned with thanks.

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen is gratefully acknowledged. The work was founded partly by the project BAMOD (Breath-gas analysis for molecular-oriented detection of minimal diseases) of the European Union (LSHC-CT-2005-019031) and the high-tech strategy funds of the Federal Republic of Germany (project Metabolit—01SF0716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bunkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunkowski, A., Bödeker, B., Bader, S. et al. Signals in human breath related to Sarcoidosis. — Results of a feasibility study using MCC/IMS. Int. J. Ion Mobil. Spec. 12, 73–79 (2009). https://doi.org/10.1007/s12127-009-0022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-009-0022-0

Keywords

Navigation