Skip to main content

Advertisement

Log in

Modeling the dynamics of soil erosion and vegetative control — catastrophe and hysteresis

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Wildfire events and anthropogenic activities such as agriculture and livestock grazing may denude the landscape from vegetation cover, resulting in systems prone to soil loss and degradation. Soil dynamics is an intricate process balanced between pedogenesis, which is a relatively slow process, and erosion which depends on many inert (e.g., soil texture, slope, precipitation, and wind) and biological factors such as vegetation properties, grazing intensity, and human disturbance. We develop here a theoretical model of the global dynamics of the interactions between vegetation and soil. Assuming a double feedback between them—plants control erosion, and soil availability facilitates plants growth—a system of nonlinear differential equations is derived, and the outcomes are investigated. The range of realistic parameter values were taken from the literature. Complex properties emerge from this model. For some ranges of parameter values, the model predicts one of two types of steady states—full recovery of vegetation cover or a degraded barren system. For another range of parameter values, bistability appears. We identify the parameter combinations which determine the qualitative behavior of the system and the threshold values beyond which the system becomes bistable. The model predicts that certain ecosystems are highly stable. Others might be bistable transitioning between these two states through perturbations. Therefore, the possibly of hysteresis as parameters vary arises, as well as the ability of the system to shift between steady states, possibly leading to sudden and dramatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen T, Carstensen J, Hernández-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57. doi:10.1016/j.tree.2008.07.014

    Article  PubMed  Google Scholar 

  • Arhonditsis G, Giourga C, Loumou A, Koulouri M (2002) Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: applications in the Mediterranean region. Environ Manage 30:434–453. doi:10.1007/s00267-001-2692-1

    Article  CAS  PubMed  Google Scholar 

  • Baudena M, Rietkerk M (2013) Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor Ecol 6:131–141. doi:10.1007/s12080-012-0165-1

    Article  Google Scholar 

  • Baudena M, D’Andrea F, Provenzale A (2010) An idealized model for tree–grass coexistence in savannas: the role of life stage structure and fire disturbances. J Ecol 98:74–80. doi:10.1111/j.1365-2745.2009.01588.x

    Article  Google Scholar 

  • Benavides-Solorio J, MacDonald LH (2001) Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrol Process 15:2931–2952. doi:10.1002/hyp.383

    Article  Google Scholar 

  • Benito G, Gutie’rrez M, Sancho C (1992) Erosion rates in badland areas of the central Ebro Basin (NE-Spain). CATENA Selected papers of the 2nd ICG Symposium on “Mediterranean Erosion”. 19:269–286. doi: 10.1016/0341-8162(92)90002-S

  • Berenguer JS (2013) A simple bistable model for reforestation in semi-arid zones, or how to turn a wasteland into a forest. Ecol Model 266:58–67. doi:10.1016/j.ecolmodel.2013.07.004

    Article  Google Scholar 

  • Bestelmeyer BT, Duniway MC, James DK et al (2013) A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought. Ecol Lett 16:339–345. doi:10.1111/ele.12045

    Article  PubMed  Google Scholar 

  • Birkeland PW (1990) Soil-geomorphic research—a selective overview. Geomorphology 3:207–224. doi:10.1016/0169-555X(90)90004-A

    Article  Google Scholar 

  • Bochet E, Poesen J, Rubio JL (2006) Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: influence of plant morphology and rainfall intensity. Earth Surf Process Landf 31:536–549. doi:10.1002/esp.1351

    Article  Google Scholar 

  • Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9:311–318. doi:10.1111/j.1461-0248.2005.00877.x

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang F, Liu G et al (2011) Modified vegetation–erosion dynamics model and its application in typical watersheds in the Loess Plateau. Int J Sediment Res 26:78–86. doi:10.1016/S1001-6279(11)60077-2

    Article  CAS  Google Scholar 

  • Collins DBG, Bras RL, Tucker GE (2004) Modeling the effects of vegetation–erosion coupling on landscape evolution. J Geophys Res Earth Surf 109, F03004. doi:10.1029/2003JF000028

    Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2006) A probabilistic analysis of fire–induced tree–grass coexistence in savannas. Am Nat 167:E79–E87. doi:10.1086/500617

    Article  PubMed  Google Scholar 

  • D’Odorico P, Engel V, Carr JA et al (2011) Tree–grass coexistence in the Everglades freshwater system. Ecosystems 14:298–310. doi:10.1007/s10021-011-9412-3

    Article  Google Scholar 

  • Davenport DW, Breshears DD, Wilcox BP, Allen CD (1998) Viewpoint: sustainability of Piñon-Juniper ecosystems: a unifying perspective of soil erosion thresholds. J Range Manag 51:231–240. doi:10.2307/4003212

    Article  Google Scholar 

  • De Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71:95–125. doi:10.1016/j.earscirev.2005.02.002

    Article  Google Scholar 

  • Dietrich WE, Wilson CJ, Montgomery DR, et al. (1992) Erosion thresholds and land surface morphology. Geology 20:675. doi: 10.1130/0091-7613(1992)020<0675:ETALSM>2.3.CO;2

  • Douglass DC, Bockheim JG (2006) Soil-forming rates and processes on quaternary moraines near Lago Buenos Aires, Argentina. Quat Res 65:293–307. doi:10.1016/j.yqres.2005.08.027

    Article  Google Scholar 

  • Edelstein-Keshet L (2005) Mathematical models in biology. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Elwell HA, Stocking MA (1976) Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15:61–70. doi:10.1016/0016-7061(76)90071-9

    Article  Google Scholar 

  • García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81:1–11

    Article  Google Scholar 

  • Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217. doi:10.1191/0309133305pp443ra

    Article  Google Scholar 

  • Hairsine PB, Sander GC, Rose CW et al (1999) Unsteady soil erosion due to rainfall impact: a model of sediment sorting on the hillslope. J Hydrol 220:115–128. doi:10.1016/S0022-1694(99)00068-2

    Article  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    Article  CAS  PubMed  Google Scholar 

  • Inbar M (1992) Rates of fluvial erosion in basins with a Mediterranean type climate. CATENA 19:393–409. doi:10.1016/0341-8162(92)90011-Y

    Article  Google Scholar 

  • Inbar M (2013) Personal communication.

  • Inbar M, Tamir M, Wittenberg L (1998) Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology 24:17–33

    Article  Google Scholar 

  • Istanbulluoglu E, Bras RL (2006) On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resour Res 42, W06418. doi:10.1029/2005WR004113

    Article  Google Scholar 

  • Jansson MB (1988) A global survey of sediment yield. Geogr Ann Ser Phys Geogr 70:81–98. doi:10.2307/521127

    Article  Google Scholar 

  • Johnson DL (1990) Biomantle evolution and the redistribution of Earth material. Soil Sci 149:84–102

    Article  Google Scholar 

  • Kéfi S, Alados CL, Chaves RCG et al (2010a) Is the patch size distribution of vegetation a suitable indicator of desertification processes? Com Ecol 91:3739–3742. doi:10.1890/09-1915.1

    Article  Google Scholar 

  • Kéfi S, Eppinga MB, Ruiter PC, Rietkerk M (2010b) Bistability and regular spatial patterns in arid ecosystems. Theor Ecol 3:257–269. doi:10.1007/s12080-009-0067-z

    Article  Google Scholar 

  • Kosmas C, Danalatos N, Cammeraat LH et al (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions. CATENA 29:45–59. doi:10.1016/S0341-8162(96)00062-8

    Article  CAS  Google Scholar 

  • Kutiel P, Inbar M (1993) Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 20:129–139

    Article  CAS  Google Scholar 

  • Laguna A, Giráldez JV (1993) The description of soil erosion through a kinematic wave model. J Hydrol 145:65–82. doi:10.1016/0022-1694(93)90220-4

    Article  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539. doi:10.1002/ldr.472

    Article  Google Scholar 

  • Lamb MP, Scheingross JS, Amidon WH et al (2011) A model for fire-induced sediment yield by dry ravel in steep landscapes. J Geophys Res Earth Surf 116, F03006. doi:10.1029/2010JF001878

    Article  Google Scholar 

  • Lockwood JA, Lockwood DR (1993) Catastrophe theory: a unified paradigm for rangeland ecosystem dynamics. J Range Manag 46:282–288. doi:10.2307/4002459

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore

    Google Scholar 

  • MacDonald LH, Huffman EL (2004) Post-fire soil water repellency: persistence and soil moisture thresholds. Soil Sci Soc Am J 68:1729–1734

    Article  CAS  Google Scholar 

  • Malkisnon D, Wittenberg L, Beeri O, Barzilai R (2011) Effects of repeated fires on the structure, composition, and dynamics of mediterranean Maquis: short- and long-term perspectives. Ecosystems 14:478–488. doi:10.1007/s10021-011-9424-z

    Article  Google Scholar 

  • Mayor Á, Kéfi S, Bautista S et al (2013) Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landsc Ecol 28:931–942. doi:10.1007/s10980-013-9870-4

    Article  Google Scholar 

  • McKean JA, Dietrich WE, Finkel RC et al (1993) Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology 21:343–346

    Article  CAS  Google Scholar 

  • Millington JDA, Wainwright J, Perry GLW et al (2009) Modelling Mediterranean landscape succession–disturbance dynamics: a landscape fire-succession model. Environ Model Softw 24:1196–1208. doi:10.1016/j.envsoft.2009.03.013

    Article  Google Scholar 

  • Minasny B, McBratney AB, Salvador-Blanes S (2008) Quantitative models for pedogenesis—a review. Geoderma 144:140–157. doi:10.1016/j.geoderma.2007.12.013

    Article  CAS  Google Scholar 

  • Montgomery DR (2007a) Dirt: the erosion of civilizations. University of California Press, Berkeley

    Google Scholar 

  • Montgomery DR (2007b) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104:13268–13272. doi:10.1073/pnas.0611508104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201:481–489. doi:10.1016/S0012-821X(02)00725-2

    Article  CAS  Google Scholar 

  • Morgan RPC, Duzant JH (2008) Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surf Process Landf 33:90–106. doi:10.1002/esp.1530

    Article  Google Scholar 

  • Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59:43–50

    Google Scholar 

  • Oost KV, Govers G, Desmet P (2000) Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc Ecol 15:577–589. doi:10.1023/A:1008198215674

    Article  Google Scholar 

  • Owoputi LO, Stolte WJ (1995) Soil detachment in the physically based soil erosion process: a review. Trans ASAE 38:1099–1110

    Article  Google Scholar 

  • Parsons AJ, Wainwright J, Brazier RE, Powell DM (2006) Is sediment delivery a fallacy? Earth Surf Process Landf 31:1325–1328. doi:10.1002/esp.1395

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601. doi:10.1525/bio.2009.59.7.10

    Article  Google Scholar 

  • Phillips JD, Turkington AV, Marion DA (2008) Weathering and vegetation effects in early stages of soil formation. CATENA 72:21–28. doi:10.1016/j.catena.2007.03.020

    Article  Google Scholar 

  • Pillans B (1997) Soil development at snail’s pace: evidence from a 6 Ma soil chronosequence on basalt in north Queensland, Australia. Geoderma 80:117–128

    Article  Google Scholar 

  • Pimentel D, Kounang N (1998) Ecology of soil erosion in ecosystems. Ecosystems 1:416–426. doi:10.1007/s100219900035

    Article  CAS  Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. CATENA 23:1–28. doi:10.1016/0341-8162(94)90050-7

    Article  Google Scholar 

  • Polking JC (2009) pplane–ODE software for Matlab. http://math.rice.edu/~dfield/dfpp.html

  • Ravi S, D’Odorico P, Zobeck TM et al (2007) Feedbacks between fires and wind erosion in heterogeneous arid lands. J Geophys Res 112:2156–2202. doi:10.1029/2007JG000474

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46:30–33

    Google Scholar 

  • Rietkerk M, van de Koppel J (1997) Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79:69–76. doi:10.2307/3546091

    Article  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F et al (2002) Self–organization of vegetation in arid ecosystems. Am Nat 160:524–530. doi:10.1086/342078

    Article  PubMed  Google Scholar 

  • Roering JJ (2008) How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data. Geol Soc Am Bull 120:1248–1262

    Article  Google Scholar 

  • Rogers RD, Schumm SA (1991) The effect of sparse vegetative cover on erosion and sediment yield. J Hydrol 123:19–24. doi:10.1016/0022-1694(91)90065-P

    Article  Google Scholar 

  • Rose CW (2001) Soil erosion models and implications for conservation of sloping tropical lands. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustain. Glob. Farm Int. Soil Conserv. Organ. ISCO Neth. Sustaining the global farm, Selected papers from the 10th International Soil Conservation Organization Meeting. International Soil Conservation Organization (ISCO), The Netherlands, pp 852–859

  • Scheffer M (2009) Critical transitions in nature and society. Press, Princeton University

    Google Scholar 

  • Scheffer M, Bascompte J, Brock WA et al (2009) Early-warning signals for critical transitions. Nature 461:53–59. doi:10.1038/nature08227

    Article  CAS  PubMed  Google Scholar 

  • Seidl I, Tisdell CA (1999) Carrying capacity reconsidered: from Malthus’ population theory to cultural carrying capacity. Ecol Econ 31:395–408. doi:10.1016/S0921-8009(99)00063-4

    Article  Google Scholar 

  • Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105:71–100. doi:10.1016/j.earscirev.2011.01.001

    Article  Google Scholar 

  • Shakesby RA, Coelho COA, Ferreira AJD, Walsh RPD (2002) Ground-level changes after wildfire and ploughing in eucalyptus and pine forests, Portugal: implications for soil microtopographical development and soil longevity. Land Degrad Dev 13:111–127. doi:10.1002/ldr.487

    Article  Google Scholar 

  • Shurin JB, Amarasekare P, Chase JM et al (2004) Alternative stable states and regional community structure. J Theor Biol 227:359–368. doi:10.1016/j.jtbi.2003.11.013

    Article  PubMed  Google Scholar 

  • Smalley IJ (1970) Cohesion of soil particles and the intrinsic resistance of simple soil systems to wind erosion. J Soil Sci 21:154–161. doi:10.1111/j.1365-2389.1970.tb01163.x

    Article  Google Scholar 

  • Smets T, Borselli L, Poesen J, Torri D (2011) Evaluation of the EUROSEM model for predicting the effects of erosion-control blankets on runoff and interrill soil erosion by water. Geotext Geomembr 29:285–297. doi:10.1016/j.geotexmem.2011.01.012

    Article  Google Scholar 

  • Soto B, Díaz-Fierros F (1998) Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by the WEPP model. Catena 31:257–270

    Article  Google Scholar 

  • Stocking MA (1994) Vegetative cover and management effects. In: Lal R (ed) Soil erosion: research methods. Soil and Water Conservation Society, Ankeny, pp 211–232

    Google Scholar 

  • Thornes JB (1985) The ecology of erosion. Geography 70:222–235

    Google Scholar 

  • Van Langevelde F, Van De Vijver CADM, Kumar L, et al. (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337–350. doi: 10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2

  • Van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738–747. doi:10.1086/516845

    Article  PubMed  Google Scholar 

  • Verhulst PF (1845) Mathematical Investigations on the Law of Population Growth. In: David H, Edwards A (eds) Annotated readings in the history of Statistics, Springer Series in statistics, 2001. Springer, New York, pp 69–75

    Google Scholar 

  • Wakatsuki T, Rasyidin A (1992) Rates of weathering and soil formation. Geoderma 52:251–263

    Article  Google Scholar 

  • Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective. Geology 33:161–164

    Article  Google Scholar 

  • Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Soil Res 43:767–779

    Article  CAS  Google Scholar 

  • Wilkinson BH, McElroy BJ (2007) The impact of humans on continental erosion and sedimentation. Geol Soc Am Bull 119:140–156

    Article  Google Scholar 

  • Wischmeier WH (1977) USLE handbook. USDA, Washington, D.C.

    Google Scholar 

  • Zeeman EC (1979) Catastrophe theory. In: Güttinger W, Eikemeier H (eds) Springer series in synergetics, Springer Berlin Heidelberg, pp 12–22. doi: 10.1007/978–3–642–67363–4_3

  • Zuazo V, Durán H, Pleguezuelo C, Rocío R (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86. doi:10.1051/agro:2007062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Burg.

Appendices

Appendix 1: Model analysis

Assumptions

We impose some assumptions on the nonlinearities f and g, which are sufficiently general to encompass any specific functional forms that one would use.

f(s) is a C1 function on [0,∞) satisfying

$$ f(0)=0,\underset{s\to \infty }{ \lim }f(s)=1 $$
(A1)
$$ f\hbox{'}(s)>0\ \mathrm{for}\ \mathrm{all}\ \mathrm{s}>0,\kern0.5em \underset{s\to \infty }{ \lim } sf\hbox{'}(s)=0 $$
(A2)

g(v) is a C1 function on [0,∞) satisfying

$$ g(0)=1,\underset{v\to \infty }{ \lim }g(v)=0 $$
(A3)
$$ -M<g\hbox{'}(v)<0\kern0.5em \mathrm{for}\ \mathrm{all}\ v>0 $$
(A4)

Nondimensionalization

To reduce the complexity of the model (1),(2), we define the nondimensional variables:

$$ v= cV,s= aS,\tau = rt $$

and the nondimensional parameters:

$$ \eta =\frac{\varepsilon }{r},\beta =\frac{a\sigma}{\varepsilon },\chi = cK $$

The model then becomes:

$$ \frac{d v}{d\tau}=v\cdot \left(1-\frac{v}{\chi f(s)}\right) $$
(A5)
$$ \frac{d s}{d\tau}=\eta \left(\beta -s\cdot g(v)\right) $$
(A6)

Equilibria

Equilibria of (A5),(A6) are given by equating derivatives with respect to time to zero

The vegetation-free equilibrium is given by:

$$ {v}^{*}=0,{s}^{*}=\beta $$

Nontrivial equilibria are solutions (s, v) of the algebraic system v = χf(s), g(v)s = β Substituting the first equation in to the second one, we reduce the above system to an equation for s:

$$ sg\left(\chi f(s)\right)=\beta . $$
(A7)

Defining the function

$$ F(s)= sg\left(\chi f(s)\right) $$

we can write (A7) as

$$ F(s)=\beta . $$
(A8)

We thus have

Lemma 1

Non-trivial equilibria of (A5),(A6) are in one-to-one correspondence with solutions of (A8), with each solution s of (A8) corresponding to an equilibrium (s ,v ) = (s ,χf(s )) of (A5),(A6).

Stability of equlibria

The Jacobian at a stationary solution (s ,v ) is given by:

$$ J=\left(\begin{array}{cc}\hfill 1-\frac{2{v}^{*}}{\chi f\left({s}^{*}\right)}\hfill & \hfill \frac{v^{*}}{\chi}\frac{f\hbox{'}\left({s}^{*}\right)}{f{\left({s}^{*}\right)}^2}\hfill \\ {}\hfill -\eta g\hbox{'}\left({v}^{*}\right){s}^{*}\hfill & \hfill -\eta g\left({v}^{*}\right)\hfill \end{array}\right) $$

For the vegetation-free equilibrium, we have

$$ J\left|{}_{v^{*}=0,{s}^{*}=\frac{\alpha }{\eta g(0)}}\right.=\left(\begin{array}{cc}\hfill 1\hfill & \hfill 0\hfill \\ {}\hfill -\eta \beta \frac{g\hbox{'}(0)}{g(0)}\hfill & \hfill -\eta g(0)\hfill \end{array}\right) $$

with eigenvalues 1 and −ηg(0) < 0, so we have a saddle point, which is unstable (Edelstein-Keshet 2005).

For nontrivial equilibria, we have, using the relation v  = χf(s ),

$$ J=\left(\begin{array}{cc}\hfill -1\hfill & \hfill \chi f\hbox{'}\left({s}^{*}\right)\hfill \\ {}\hfill -\eta g\hbox{'}\left(\chi f\left({s}^{*}\right)\right){s}^{*}\hfill & \hfill -\eta g\left(\chi f\left({s}^{*}\right)\right)\hfill \end{array}\right) $$

so that tr(J) = − 1 − ηg(v*) < 0 and det(J) = η[g(χf(s*) + χf ' (s*)g ' (χf ' (s*)s*)] = ηF ' (s*)

We then conclude that:

Lemma 2

A nontrivial stationary solution (s ,v ) is stable if F ' (s ) > 0 and unstable if F ' (s ) < 0.

Multiplicity of equilibrium solutions

Lemmas 1 and 2 reduce the study of the existence, multiplicity, and stability of stationary solutions of (A5),(A6) to the study of the zeros of the scalar function F(s), which can thus be approached by tools of elementary calculus. We show that at least one nontrivial equilibrium always exists and that the equilibrium is unique and stable when χ is sufficiently small and also when β. is either very small or very large. On the other hand, we show that multiple solutions exist for some parameter values, under certain conditions on the nonlinearities f,g.

Theorem 1

  1. (i)

    For any values of χ, β. and η, (A5),(A6) has at least one nontrivial equilibrium solution.

  2. (ii)

    For any value of χ, there exist a,b > 0 such that if β < a or β > b , then (A5),(A6) has a unique equilibrium solution, which is stable.

  3. (iii)

    There exists a value χ 0 such that if χ < χ 0, then there is a unique solution of (A5),(A6) for all values of β, η , which is stable.

  4. (iv)

    Define the quantities:

$$ A=\underset{v>0}{ \sup}\frac{v\left|g\hbox{'}(v)\right|}{g(v)} $$
$$ B=\underset{s>0}{ \inf}\frac{f(s)}{sf\hbox{'}(s)} $$
  • If B ≥ A, then (A5),(A6) has a unique solution for all values of χ, β, η which is asymptotically stable.

  • -If A > B, then there is a range of values of χ, β, η for which (A5),(A6) has at least three solutions, at least one of which is unstable.

Proof: (i) We note that

$$ F(0)=0 $$
(A9)

and since, using (A1) \( \underset{s\to \infty }{ \lim }g\left(\chi f(s)\right)=g\left(\chi \right)>0 \) , we have

$$ \underset{s\to \infty }{ \lim }F(s)=\underset{s\to \infty }{ \lim } sg\left(\chi f(s)\right)=+\infty $$
(A10)

From (A9),(A10) and the intermediate value theorem, we have that (A8) has at least one solution for any values of α, η.

(ii) We have F ' (s) = g(χf(s)) + χsg ' (χf(s))f ' (s). So F ' (0) = g(χf(0)) > 0

Hence, there exists s 1 > 0 such that

$$ s\in\ \left[0,{s}_1\right]\Rightarrow F\hbox{'}(s) > 0 $$
(A11)

Let

$$ a=\underset{s\ge {s}_1}{ \inf }F(s) $$
(A12)

Since F is positive and satisfies (A10), we have a > 0. Now if β < a and s is a solution of (A8), then by (A12), we have s  < s 1, and since by (A11), F is increasing on [0, s 1], this solution must be unique. By (A11), we have F ' (s*) > 0, so that Lemma 2 implies that the corresponding equilibrium is stable. We therefore have uniqueness and stability of the nontrivial equilibrium when β < a.

We note also that, using (A1),(A2),(A3), we have

$$ \underset{s\to \infty }{ \lim }F\hbox{'}(s)=g\left(\chi \right)+\chi g\hbox{'}\left(\chi \right)\cdot \underset{s\to \infty }{ \lim } sf\hbox{'}(s)=g\left(\chi \right)>0 $$

so there exists s 2 such that

$$ s\in \left[{s}_2,+\infty \right)\Rightarrow F\hbox{'}(s)>0 $$
(A13)

Let

$$ b=\underset{s\in \left[0,{s}_2\right]}{ \sup }F(s) $$
(A14)

If β > a and s* is a solution of (A8), then by (A14), we have s* > s 2 and since, by (A13), F is increasing on [s2, +∞), this solution is unique. By (A13), we have F ' (s*) > 0, so Lemma 2 implies that the corresponding equilibrium is stable. We therefore have uniqueness and stability of the nontrivialequilibrium when β > a.

(iii) Let

$$ {m}_1=\underset{s>0}{ \sup}\left| sg\hbox{'}\left(\chi f(s)\right)f\hbox{'}(s)\right| $$

By (A2),(A4) m 1 is finite. Since f is increasing and g is decreasing, we have for all s ≥ 0,

$$ 0<f(s)\le 1\Rightarrow g\left(\chi f(s)\right)\ge g\left(\chi \right) $$

Hence, for all s ≥ 0,

$$ F\hbox{'}(s)\ge g\left(\chi \right)-\chi \left| sg\hbox{'}\left(\chi f(s)\right)f\hbox{'}(s)\right|\ge g\left(\chi \right)-\chi {m}_1 $$
(A15)

Since g(χ) − χm 1 → 1 as χ → 0, we can choose χ 0, so that g(χ) − χm 1 > 0 for χ ∈ [0, χ 0], so that (A15) implies F’(s) > 0 for all s ≥ 0, which implies uniqueness of the solution of (A8) for all values of β as well as, by Lemma 2, the stability of the corresponding equilibrium.

(iv) If F’(s) > 0 for all s, then the solution of (A8) is unique for all β, η, and, by Lemma 2, it is stable. On the other hand, assume F’(s 0) < 0 for some s 0 > 0. Since by (A11) and (A13) we know that for very small and very large values of s > 0 we have F’(s) > 0, there exist s 0  < s 0 < s +0 such that F’(s) < 0 for s ∈ (s 0 , s +0 ) and F ' (s 0 ) = F ' (s +0 ) = 0. F is thus decreasing in the interval [s 0 , s +0 ]. Assume β ∈ (F(s 0 ), F(s +0 )). Then (A8) has a solution s * ∈ (s 0 s +0 ) which, by Lemma 2, is unstable. Since F(0) = 0 and F(s 0 ) > β, (A8) also has a solution in (0, s 0 ), and since F(s +0 ) < β and we have (A10), (A8) also has a solution in (s +0 , ∞). Thus, we have shown that, if F ' (s 0) < 0 for some s 0 , then (A8) has at least three solutions for some range of values of β.

Let us show that, if B ≥ A, then F’(s) > 0 for all s and any value of χ. Indeed, the condition F’(s) < 0 can be written

$$ g\left(\chi f(s)\right) + \chi sg\hbox{'}\left(\chi f(s)\right)f\hbox{'}(s) < 0 $$

or equivalently

$$ \chi f(s)\frac{\left|g\hbox{'}\left(\chi f(s)\right)\right|}{g\Big(\left(\chi f(s)\right)}>\frac{f(s)}{sf\hbox{'}(s)} $$
(A16)

If B ≥ A, then we have, for all s > 0

$$ \chi f(s)\frac{\left|g\hbox{'}\left(\chi f(s)\right)\right|}{g\left(\chi f(s)\right)}\le \underset{v>0}{ \sup}\frac{v\left|g\hbox{'}(v)\right|}{g(v)}=A. $$
$$ \frac{f(s)}{sf\hbox{'}(s)}\ge \underset{s>0}{ \inf}\frac{f(s)}{sf\hbox{'}(s)}=B $$

So that B ≥ A implies that (A16) cannot hold, hence F’(s) > 0 for all s.

On the other hand, if A > B, then we can find some values of v, s > 0 such that \( \frac{v\left|g\hbox{'}(v)\right|}{g(v)}>\frac{f(s)}{sf\hbox{'}(s)} \), and defining \( \chi =\frac{v}{f(s)} \) , we obtain (A16), so that for this value of χ, we have F’(s) < 0.

This concludes the proof of Theorem 1.

We demonstrate the application of part (iv) of the above theorem for two choices of the nonlinearities:

For the particular function forms (3),(4) \( f(s)=1-\frac{1}{1+s},g(v)={e}^{-v} \) , we have \( A=\underset{v>0}{ \sup}\frac{v\left|g\hbox{'}(v)\right|}{g(v)}=\underset{v>0}{ \sup }v=+\infty \)

$$ B=\underset{s>0}{ \inf}\frac{f(s)}{sf\hbox{'}(s)}= \inf \left(1+s\right)=1 $$

so that A > B and part (iv) of Theorem 1 implies that there are values of the parameters for which multiple stationary solutions exist. Further study of this case is made in Appendix 2.

On the other hand, if we take f as above, but take

$$ g(v)=\frac{1}{1+\sqrt{v}} $$

we get \( A=\underset{v>0}{ \sup}\frac{1}{2}\frac{\sqrt{v}}{1+\sqrt{v}}=\frac{1}{2} \), so that B > A and part (iv) of Theorem 1 ensures a unique stationary solution for all values of the parameters, and thus bistability will not occur. Thus, the capacity of the model to produce bistability does depend on the functional forms f,g.

Appendix 2. Conditions of bistability for the functional form (3),(4)

We now carry out a more detailed analysis in the case of the functional forms (3),(4), which allows us to explore more explicitly the conditions under which bistability emerges. In this case,

$$ F(s)= sg\left(\chi f(s)\right)=s{e}^{-\chi \frac{s}{1+s}} $$
(B1)

Differentiating, we have:

$$ F\hbox{'}(s)={e}^{-\chi \frac{s}{1+s}}\left(1-\chi \frac{s}{{\left(s+1\right)}^2}\right) $$

and the critical points of F are obtained by solving F’(s) = 0, giving:

$$ {s}_1=\left(\chi -2-\sqrt{\chi \left(\chi -4\right)}\right),\kern1em {s}_2=\left(\chi -2+\sqrt{\chi \left(\chi -4\right)}\right) $$

We consider two cases:

(I) If χ < 4 then no critical points exist, so that F’(s) does not change sign, and since F’(0) = 1 > 0, we conclude that F’(s) > 0, for all s ≥ 0 and that F(s) is monotonically increasing. Since lim S→∞ F(s) = +∞, we conclude that, in this case, the equation (A8) has a unique solution, hence, there exists a unique nontrivial equilibrium (s *,v *) of (A5),(A6). Moreover, by Lemma 2, this equilibrium is stable.

(II) If χ > 4, then there are two critical points s 1 and s 2, and it is evident that both are positive. Since F’(0) > 0, we conclude that F(s) is increasing in the interval [0,s 1], decreasing in the interval [s 1,s 2] and increasing in the interval [s 2,∞). Thus, s 1 is a local maximum point and s 2 a local minimum point of F(s) (Fig. 2). Therefore, if equation F(s 2) < β < F(s 1), then (A8) has three solutions s *1 , s *2 , and s *3 , satisfying:

$$ {s}_1^{*}\in \left(0,{s}_1\right),{s}_2^{*}\in \left({s}_1,{s}_2\right),{s}_3^{*}\in \left({s}_2,\infty \right), $$

so that F ' (s *1 ) > 0, F ' (s *2 ) < 0, F ' (s *3 ) > 0. 

Therefore, by Lemma 2 of Appendix 1, the solutions s *1 and s *3 correspond to stable equilibria while s *2 corresponds to the unstable equilibrium. The condition for bistability is thus:

$$ {\uplambda}_1<\beta <{\uplambda}_2 $$
(B2)

Where λ 1 = F(s 2), λ 2 = F(s 1) or explicitly:

$$ {\lambda}_{1,2}=\frac{1}{2}\left(\chi -2\mp \sqrt{\chi \left(\chi -4\right)}\right){e}^{-\chi \left(1-\frac{2}{\chi \mp \sqrt{\chi \left(\chi -4\right)}}\right)}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burg, D., Malkinson, D., Katriel, G. et al. Modeling the dynamics of soil erosion and vegetative control — catastrophe and hysteresis. Theor Ecol 8, 67–79 (2015). https://doi.org/10.1007/s12080-014-0233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-014-0233-9

Keywords

Navigation