Skip to main content

Advertisement

Log in

Tree–Grass Coexistence in the Everglades Freshwater System

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Mosaic freshwater landscapes exhibit tree-dominated patches —or tree islands—interspersed in a background of marshes and wet prairies. In the Florida Everglades, these patterned landscapes provide habitat for a variety of plant and animal species and are hotspots of biodiversity. Even though the emergence of patchy freshwater systems has been associated with climate histories, fluctuating hydrologic conditions, and internal feedbacks, a process-based quantitative understanding of the underlying dynamics is still missing. Here, we develop a mechanistic framework that relates the dynamics of vegetation, nutrients and soil accretion/loss through ecogeomorphic feedbacks and interactions with hydrologic drivers. We show that the stable coexistence of tree islands and marshes results as an effect of their both being (meta-) stable states of the system. However, tree islands are found to have only a limited resilience, in that changes in hydrologic conditions or vegetation cover may cause an abrupt shift to a stable marsh state. The inherent non-linear and discontinuous dynamics determining the stability and resilience of tree islands should be accounted for in efforts aiming at the management, conservation and restoration of these features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderies JM, Janssen MA, Walker BH. 2002. Grazing, management, resilience and the dynamics of fire-driven rangeland system. Ecosystems 5:23–44.

    Article  Google Scholar 

  • Armentano TV. 1980. Drainage of organic soils as a factor in the world carbon cycle. Bioscience 30(12):825–30.

    Article  Google Scholar 

  • Armentano TV, Jones DT, Ross MS, Gamble BW. 2002. Vegetation pattern and process in tree islands of the southern Everglades and adjacent areas. In: Sklar FH, van der Valk A, Eds. Tree islands of the everglades. Dordrecht: Kluwer. p 225–81.

    Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L. 2009. Mathematical models of vegetation pattern formation in Ecohydrology. Rev Geophys 47:RG1005. doi:10.1029/2007RG000256.

  • Brandt LA, Silveira JE, Kitchens WM. 2002. Tree islands of the Arthur R. Marshall Loxahatchee National Wildlife Refuge. In: Sklar FH, Valk Avd, Eds. Tree Islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 311–35.

    Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35(4):881–902.

    Google Scholar 

  • Charley JL, West NE. 1975. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J Ecol 63(3):945–63.

    Article  CAS  Google Scholar 

  • Craighead FC. 1971. The trees of south Florida. Volume 1: the natural environments and their succession, University of Miami Press, Coral Gables, FL., 212 pp.

  • Davis SM, Gunderson LH, Park WA, Richardson JR, Mattson JE. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In: Davis SM, Ogden JC, Eds. Everglades: the ecosystem and its restoration. Delray Beach (FL): St. Lucie Press. p 419–44.

    Google Scholar 

  • DeLonge M, D’Odorico P, Lawrence D. 2008. Feedbacks between phosphorous deposition and canopy cover: the emergence of multiple states in dry tropical forests. Glob Change Biol 14(1):154–60. doi:10.1111/j.1365-2486.2007.01470.x.

    Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L. 2006. A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167(3):E79–87.

    Article  PubMed  Google Scholar 

  • Dougill AJ, Thomas AD. 2002. Nebkha dunes in the Molopo Basin, South Africa and Botswana: formation, controls and their validity as indicators of soil degradation. J Arid Environ 50:413–28.

    Article  Google Scholar 

  • Dublin HT, Sinclair ARE, McGlade J. 1990. Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. J Anim Ecol 59:1147–64.

    Article  Google Scholar 

  • Felker P, Diaz-De Leon V. 2005. An improved tool for the fabrication of dendrometerbands to estimate growth as function of treatments in slow growing native Prosopis stands. For Ecol Manag 209:353–6.

    Article  Google Scholar 

  • Frederick PC, Powell GVN. 1994. Nutrient transport by wading birds in the Everglades. In: Davis SM, Ogden JC, Eds. Everglades: the ecosystem and its restoration. Delray Beach (FL): St. Lucie Press.

    Google Scholar 

  • Givnish TJ, Volin JC, Owen VD, Volin VC, Muss JD, Glaser PH. 2008. Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecol Biogeogr 17:384–402.

    Article  Google Scholar 

  • Glaser PH. 1987. The Ecology of Patterned Boreal Peatlands of Northern Minnesota: a Community Profile. U.S. Fish and Wildlife, Serv. Rep., Report 85 (7.14), Washington, DC.

  • Glaser PH. 1992. Raised bogs in eastern North America–Regional controls for species richness and floristic assemblages. J Ecol 80:535–54.

    Article  Google Scholar 

  • Graf M-T, Schwadron M, Stone PA, Ross M, Chmura GL. 2008. An enigmatic carbonate layer in Everglades tree island peats. EOS 89(12):117–18.

    Article  Google Scholar 

  • Hagerthey SE, Newman S, Rutchey K, Smith EP, Godin J. 2008. Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecol Monogr 78:547–65.

    Article  Google Scholar 

  • Kwon H-H, Lall U, Moon Y-I, Khalil AF, Ahn H. 2006. Episodic interannual climate oscillations and their influence on seasonal rainfall in the Everglades National Park. Water Resour Res 42:W11404. doi:10.1029/2006WR005017.

  • Khalaf FI, Misak R, Al-Dousari A. 1995. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia. J Arid Environ 29(3):267–292, ISSN 0140-1963.

    Google Scholar 

  • Lago ME, Miralles-Wilhelm F, Mahmoudi M, Engel V. 2010. Numerical modeling of the effects of water flow, sediment transport and vegetation growth on the spatiotemporal patterning of the ridge and slough landscape of the Everglades wetland. Adv Water Res. doi:10.1016/j.advwatres.2010.07.009.

  • Larsen LG, Harvey JW, Crimaldi JP. 2007. A delicate balance: ecohydrological feedbacks governing landscape morphology in a lotic peatland. Ecol Monogr 77:591–614.

    Article  Google Scholar 

  • Larsen LG, Harvey JW. 2010. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology. doi:10.1016/j.geomorph.2010.03.015.

  • Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, Eaton J. 20701. 2007. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc Natl Acad Sci USA PNAS 104(52):52:20696–20701.

    Article  Google Scholar 

  • Luken JO, Billings WD. 1985. The influence of microtopographic heterogeneity on carbon dioxide efflux from a subarctic bog. Holarctic Ecol 8:306–12.

    Google Scholar 

  • Jones DT, Sah JP, Ross MS, Oberbauer SF, Hwang B, Jayachandran K. 2006. Response of twelve tree species common in Everglades tree islands to simulated hydrologic regimes. Wetlands 26(3):830–44.

    Article  Google Scholar 

  • Macek P, Rejmankova E, Fuchs R. 2009. Biological activities as patchiness driving forces in wetlands of northern Belize. Oikos 118:1687–94.

    Article  Google Scholar 

  • Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2007. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402. doi:10.1029/2007GL030178.

    Article  Google Scholar 

  • McCarthy TS, Ellery WN. 1994. The effect of vegetation on soil and ground water chemistry and hydrology of islands in the seasonal swamps of the Okavango fan Botswana. J Hydrol 154:169–93.

    Article  CAS  Google Scholar 

  • McCarthy TS. 2006. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320(3–4):264–82.

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG. 2000. Wetlands. New York: Wiley.

    Google Scholar 

  • Moore TR, Knowles R. 1989. The influence of water-table levels on methane and carbon-dioxide emissions from peatland soils. Can J Sci 69(1):33–8.

    Article  CAS  Google Scholar 

  • Naiman R, Decamps H. 1997. The ecology of interfaces: Riparian zones. Annu Rev Ecol Syst 28:621–58.

    Article  Google Scholar 

  • Nickling WG, Wolfe SA. 1994. The morphology and origin of Nabkhas, Region of Mopti, Mali, West Africa. J Arid Environ 28:13–30.

    Article  Google Scholar 

  • Noy-Meir I. 1975. Stability of grazing systems: an application of predator-prey graphs. J Ecol 63:459–81.

    Article  Google Scholar 

  • Orem WH, Willard DA, Lerch HE, Bates AL, Boyland A, Comm M. 2002. Nutrient geochemistry of sediments from two tree islands in Water Conservation Area #B, the Everglades, Florida. In: Sklar FH, van der Valk AG, Eds. Tree islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 153–86.

    Google Scholar 

  • Prance GT, Schaller GB. 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34:228–51.

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Okin GS. 2007. Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophys Res Lett 34:L24S23. doi:10.1029/2007GL031023.

    Article  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99.

    Article  Google Scholar 

  • Richardson CJ. 2009. The Everglades: North America’s subtropical wetland. Wetlands Ecol Manage. doi:10.1007/s11273-009-9156-4.

  • Richardson CJ. 2000. Freshwater wetlands. In: Barbour MG, Billings WD, Eds. North American terrestrial vegetation. Cambridge: Cambridge University Press. p 449–98.

    Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F. 2006. Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resour Res 42:W01201. doi:10.1029/2005WR004444.

    Article  Google Scholar 

  • Ridolfi L, Laio F, D’Odorico P. 2008. Fertility island formation and evolution in dryland ecosystems. Ecol Soc 13(1):5.

    Google Scholar 

  • Rietkerk M, Dekker SC, Wassen MJ, Verkroost AWM, Bierkens MFP. 2004. A putative mechanism for bog patterning. Am Nat 163(5):699–708.

    Article  PubMed  CAS  Google Scholar 

  • Ross MS, Mitchell-Bruker S, Sah JP, Stothoff S, Ruiz PL, Reed DL, Jayachandran K, Coultas CL. 2006. Interaction of hydrology and nutrient limitation in the ridge and slough landscape of the southern Everglades. Hydrobiologia 569:37–59.

    Article  CAS  Google Scholar 

  • Sah JP. 2004. Vegetation structure and composition in relation to the hydrological and soil environments in tree islands of Shark Slough. Chapter 6. In: Ross MS, Jones DT, Eds. Tree Islands in the Shark Slough Landscape: interactions of vegetation, hydrology and soils. Final Report submitted to Everglades National Park, U.S. Department of the Interior, National Park Service.

  • Sarmiento G. 1984. The Ecology of Neotropical Savannas. Cambridge (MA): Harvard University Press.

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker BH. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunnigham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 147:1043–8.

    Article  Google Scholar 

  • Scholes RJ, Archer SR. 1997. Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–44.

    Article  Google Scholar 

  • Scholes RJ, Walker BH. 1993. An African Savanna. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Science Coordination Team (SCT). 2003. The role of flow in the everglades ridge and slough landscape, South Florida Ecosystem Restoration Working Group, 62 pp.

  • Shachak M, Boeken B, Groner E, Kadmon R, Lubin Y, Meron E, Ne’Eman G, Perevolotsky A, Shkedy Y, Ungar ED. 2008. Woody species as landscape modulators and their effects on biodiversity patterns. Bioscience 58:209–21.

    Article  Google Scholar 

  • Sklar FH. 2001. In: Kloor K, Eds. Forgotten Islands, Audubon Magazine, July–August.

  • Sklar FH, van der Valk A, Eds. 2002. Tree islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 541.

    Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM. 2005. How bird droppings can affect the vegetation composition of ombrotrophic bogs. Can J Bot 83:1046–56.

    Article  Google Scholar 

  • Troxler TG, Childers DL. 2009. Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. Plant Ecol 200:69–82.

    Article  Google Scholar 

  • Van der Valk AG, Warner BG. 2009. The development of patterned mosaic landscapes: an overview. Plant Ecol 200:1–7.

    Article  Google Scholar 

  • Vetaas OR. 1992. Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–44.

    Article  Google Scholar 

  • Wang L, D’Odorico P, Macko S, Ringrose S, Coetzee S. 2007. Biogeochemistry of Kalahari sands. J Arid Environ 71:259–79.

    Article  Google Scholar 

  • Walker BH, Ludwig D, Holling CS, Peterman RM. 1981. Stability of semiarid savanna grazing systems. J Ecol 69:473–98.

    Article  Google Scholar 

  • Walker BH, Noy-Meir I. 1982. Aspects of stability and resilience of savanna ecosystems. In: Walker BH, Huntley B, Eds. Ecology of Subtropical Savannas. Berlin: Springer. p 556–90.

    Google Scholar 

  • Walter H. 1971. Ecology of tropical and subtropical vegetation. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Watts DL, Cohen MJ, Heffernan JB, Osborne TZ. 2010. Hydrologic Modification and the Loss of Self-organized Patterning in the Ridge–Slough Mosaic of the Everglades. Ecosystems 13(6):813–27. doi:10.1007/s10021-010-9356-z.

    Article  Google Scholar 

  • Wetzel PR. 2002. Analysis of tree island vegetation communities. In: Sklar FH, van der Valk A, Eds. Tree Islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 357–89.

    Google Scholar 

  • Wetzel PR, van der Valk A, Newman S, Gawlik DE, Troxler-Gann TG, Coronado-Molina CA et al. 2005. Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Front Ecol Environ 3:370–6.

    Article  Google Scholar 

  • Wetzel PR, van der Valk AG, Newman S, Coronado CA, Troxler-Gann TG, Childers DL, Orem WH, Sklar FH. 2009. Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades. Plant Ecol 200:83–90.

    Article  Google Scholar 

  • Willard DA, Bernhardt CE, Holmes CW, Landacre B, Marot M. 2006. Response of Everglades Tree Islands to environmental change. Ecol Monogr 76(4):565–83.

    Article  Google Scholar 

  • Wilson JB, Agnew ADQ. 1992. Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336.

    Article  Google Scholar 

Download references

Acknowledgements

Support from the National Park Service (Everglades National Park #H5284080004) is gratefully acknowledged. This manuscript has greatly benefited from comments provided by Dr. Laurel G. Larsen and Dr. Judson W. Harvey, an anonymous reviewer, and the subject editor, Dr. Donald DeAngelis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo D’Odorico.

Additional information

Author Contributions

PD-Conceived and designed study, performed research, contributed new models, wrote the article. VE-Conceived and designed study, performed research, analyzed data, wrote the article. JC-Conceived and designed study, performed research, contributed new models. SO-Performed research, analyzed data. MR-Performed research, analyzed data. JS-Performed research, analyzed data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Odorico, P., Engel, V., Carr, J.A. et al. Tree–Grass Coexistence in the Everglades Freshwater System. Ecosystems 14, 298–310 (2011). https://doi.org/10.1007/s10021-011-9412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9412-3

Keywords

Navigation