Skip to main content
Log in

EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Because of differences in the downstream signaling patterns of its pathways, the role of the human epidermal growth factor family of receptors (HER) in promoting cell growth and survival is cell line and context dependent. Using two model cell lines, we have studied how the regulatory interaction network among the key proteins of HER signaling pathways may be rewired upon normal to cancerous transformation. We in particular investigated how the transcription factor STAT3 and several key kinases’ involvement in cancer-related signaling processes differ between normal 184A1L5 human mammary epithelial (HME) and MDA-MB-231 breast cancer epithelial cells. Comparison of the responses in these cells showed that normal-to-cancerous cellular transformation causes a major re-wiring of the growth factor initiated signaling. In particular, we found that: i) regulatory interactions between Erk, p38, JNK and STAT3 are triangulated and tightly coupled in 184A1L5 HME cells, and ii) STAT3 is only weakly associated with the Erk-p38-JNK pathway in MDA-MB-231 cells. Utilizing the concept of pathway substitution, we predicted how the observed differences in the regulatory interactions may affect the proliferation/survival and motility responses of the 184A1L5 and MDA-MB-231 cells when exposed to various inhibitors. We then validated our predictions experimentally to complete the experiment-computation-experiment iteration loop. Validated differences in the regulatory interactions of the 184A1L5 and MDA-MB-231 cells indicated that instead of inhibiting STAT3, which has severe toxic side effects, simultaneous inhibition of JNK together with Erk or p38 could be a more effective strategy to impose cell death selectively to MDA-MB-231 cancer cells while considerably lowering the side effects to normal epithelial cells. Presented analysis establishes a framework with examples that would enable cell signaling researchers to identify the signaling network structures which can be used to predict the phenotypic responses in particular cell lines of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146. doi:10.1042/bst20110609

    Article  CAS  PubMed  Google Scholar 

  • Alexander J, Lim D, Joughin BA, Hegemann B, Hutchins JRA, Ehrenberger T et al (2011) Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling. Sci Signal 4(179). doi:10.1126/scisignal.2001796

  • Andrec M, Kholodenko BN, Levy RM, Sontag E (2005) Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol 232(3):427–441. doi:10.1016/j.jtbi.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  • Arteaga C (2003a) Targeting HERI/EGFR: a molecular approach to cancer therapy. Semin Oncol 30(3):3–14

    Article  CAS  Google Scholar 

  • Arteaga CL (2003b) ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res 284(1):122–130

    Article  CAS  PubMed  Google Scholar 

  • Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12(2):104–117. doi:10.1038/nrm3048

    Article  CAS  PubMed  Google Scholar 

  • Banerjee K, Resat H (2015) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. doi:10.1002/ijc.29923

    Google Scholar 

  • Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD (2001) EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 19(6):1155–1160

    CAS  PubMed  Google Scholar 

  • Britten CD (2004) Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther 3(10):1335–1342

    CAS  PubMed  Google Scholar 

  • Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN (2002) Modular response analysis of cellular regulatory networks. J Theor Biol 218(4):507–520

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11(11):1188–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiacchiera F, Grossi V, Cappellari M, Peserico A, Simonatto M, Germani A et al (2012) Blocking p38/ERK crosstalk affects colorectal cancer growth by inducing apoptosis in vitro and in preclinical mouse models. Cancer Lett 324(1):98–108. doi:10.1016/j.canlet.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  • Chin YR, Toker A (2009) Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 21(4):470–476. doi:10.1016/j.cellsig.2008.11.015

    Article  CAS  PubMed  Google Scholar 

  • Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71(3–4):479–500

    Article  CAS  PubMed  Google Scholar 

  • Davidson NE, Gelmann EP, Lippman ME, Dickson RB (1987) Epidermal growth factor receptor Gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1(3):216–223. doi:10.1210/mend-1-3-216

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS (1999) Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 96(11):6235–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey MR, Dise RS, Edelblum KL, Polk DB (2006) p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO J 25(24):5683–5692. doi:10.1038/sj.emboj.7601457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C, Zhang Y, Shankaran H, Resat H (2015) Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells. Mol BioSyst 11:146–158. doi:10.1039/C4MB00471J

    Article  CAS  PubMed  Google Scholar 

  • Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res 63(5):1130–1137

    CAS  PubMed  Google Scholar 

  • Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Hui LJ, Bakiri L, Stepniak E, Wagner EF (2007) p38 alpha - a suppressor of cell proliferation and tumorigenesis. Cell Cycle 6(20):2429–2433

    Article  CAS  PubMed  Google Scholar 

  • Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21(2):177–184. doi:10.1016/j.ceb.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  • Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439(7073):168–174

    Article  CAS  PubMed  Google Scholar 

  • Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA (2007) EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J Cell Sci 120(20):3688–3699. doi:10.1242/jcs.010488

    Article  CAS  PubMed  Google Scholar 

  • Joslin EJ, Shankaran H, Opresko LK, Bollinger N, Lauffenburger DA, Wiley HS (2010) Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context. Mol BioSyst 6(7):1293–1306. doi:10.1039/c003921g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica Et Biophysica Acta-Molecular Cell Research 1773(8):1161–1176. doi:10.1016/j.bbamcr.2007.01.002

    Article  CAS  Google Scholar 

  • Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks (vol 99, pg 12841, 2002). Proc Natl Acad Sci U S A 99(23):15245

    CAS  Google Scholar 

  • Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D et al (2013) Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol Syst Biol 9. doi:10.1038/msb.2013.29

  • Kumar N, Afeyan R, Kim HD, Lauffenburger DA (2008) Multipathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. Mol Pharmacol 73(6):1668–1678. doi:10.1124/mol.107.043794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  CAS  PubMed  Google Scholar 

  • Libermann TA, Razon N, Bartal AD, Yarden Y, Schlessinger J, Soreq H (1984) Expression of epidermal growth-factor receptors in human-brain tumors. Cancer Res 44(2):753–760

    CAS  PubMed  Google Scholar 

  • Mueller KL, Powell K, Madden JM, Eblen ST, Boerner JL (2012) EGFR tyrosine 845 phosphorylation-dependent proliferation and transformation of breast cancer cells require activation of p38 MAPK. Transl Oncol 5(5):327–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Naegle KM, White FM, Lauffenburger DA, Yaffe MB (2012) Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol BioSyst 8(10):2771–2782. doi:10.1039/c2mb25200g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. doi:10.1016/j.ccr.2006.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neve RM, Holbro T, Hynes NE (2002) Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells. Oncogene 21(29):4567–4576

    Article  CAS  PubMed  Google Scholar 

  • Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366(1):2–16

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Warner N (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene 26(9):1268–1275. doi:10.1038/sj.onc.1210255

    Article  CAS  PubMed  Google Scholar 

  • Prenzel N, Zwick E, Leserer M, Ullrich A (2000) Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast Cancer Res 2(3):184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Rodland KD, Bollinger N, Ippolito D, Opresko LK, Coffey RJ, Zangar R et al (2008) Multiple mechanisms are responsible for transactivation of the epidermal growth factor receptor in mammary epithelial cells. J Biol Chem 283(46):31477–31487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–U139. doi:10.1038/ncb1543

    Article  CAS  PubMed  Google Scholar 

  • Santra T, Kolch W, Kholodenko BN (2013) Integrating Bayesian variable selection with modular response analysis to infer biochemical network topology. BMC Syst Biol 7. doi:10.1186/1752-0509-7-57

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  CAS  PubMed  Google Scholar 

  • Sen M, Joyce S, Panahandeh M, Li CY, Thomas SM, Maxwell J et al (2012) Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 18(18):4986–4996. doi:10.1158/1078-0432.ccr-12-0792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankaran H, Resat H, Wiley HS (2007a) Cell surface receptors for signal transduction and ligand transport: a design principles study. PLoS Comput Biol 3(6):986–999. doi:10.1371/journal.pcbi.0030101

    Article  CAS  Google Scholar 

  • Shankaran H, Wiley HS, Resat H (2006) Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response. Biophys J 90(11):3993–4009. doi:10.1529/biophysj.105.080580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankaran H, Wiley HS, Resat H (2007b) Receptor downregulation and desensitization enhance the information processing ability of signalling receptors. BMC Syst Biol 1:48. doi:10.1186/1752-0509-1-48

    Article  PubMed  PubMed Central  Google Scholar 

  • Shankaran H, Zhang Y, Chrisler WB, Ewald JA, Wiley HS, Resat H (2012) Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics. Mol BioSyst 8(11):2868–2882. doi:10.1039/c2mb25190f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankaran H, Zhang Y, Opresko L, Resat H (2008) Quantifying the effects of co-expressing EGFR and HER2 on HER activation and trafficking. Biochem Biophys Res Commun 371(2):220–224. doi:10.1016/j.bbrc.2008.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankaran H, Zhang Y, Tan YB, Resat H (2013) Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3. Plos Computational Biology 9(8). doi:10.1371/journal.pcbi.1003201

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  CAS  PubMed  Google Scholar 

  • Stampfer MR, Pan CH, Hosoda J, Bartholomew J, Mendelsohn J, Yaswen P (1993) Blockage of EGF receptor signal transduction causes reversible arrest of normal and immortal human mammary epithelial cells with synchronous reentry into the cell cycle. Exp Cell Res 208:175–188

    Article  CAS  PubMed  Google Scholar 

  • Volinsky N, Kholodenko BN (2013) Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol 5(8). doi:10.1101/cshperspect.a009043

  • Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549. doi:10.1038/nrc2694

    Article  CAS  PubMed  Google Scholar 

  • Wu CJ, Qian XL, O'Rourke DM (1999) Sustained mitogen-activated protein kinase activation is induced by transforming erbB receptor complexes. DNA Cell Biol 18(10):731–741. doi:10.1089/104454999314872

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18(1):45–56. doi:10.1517/13543780802565791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Opresko L, Shankaran H, Chrisler WB, Wiley HS, Resat H (2009) HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells. BMC Cell Biol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4(9):1240–1250. doi:10.1074/mcp.M500089-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research described in this paper was funded by the National Institutes of Health Grant 5R01GM072821 and by the WSU start-up funds to H.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Resat.

Electronic supplementary material

ESM 1

(DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speth, Z., Islam, T., Banerjee, K. et al. EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells. J. Cell Commun. Signal. 11, 341–356 (2017). https://doi.org/10.1007/s12079-017-0389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0389-3

Keywords

Navigation