Skip to main content
Log in

VEGF induces stress fiber formation in fibroblasts isolated from dystrophic muscle

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Treatment with vascular endothelial growth factor (VEGF) to reduce ischemia and enhance both endogenous muscle repair and regenerative cell therapy in Duchenne muscular dystrophy (DMD) has been widely proposed in recent years. However, the interaction between angiogenesis and fibrosis, a hallmark feature of DMD, remains unclear. To date, it has not been determined whether VEGF exerts a pro-fibrotic effect on DMD-derived fibroblasts, which may contribute to further disease progression. Thus, the purpose of this study was to investigate the effect of exogenous VEGF on fibroblast cultures established from a murine model of DMD. Primary fibroblast cultures were established from gastrocnemius and diaphragm muscles of 10 week-old mdx/utrn+/- mice. Quantitative polymerase chain reaction (qPCR) was employed to assess changes in transcript expression of alpha-smooth muscle actin (Acta2), type-1 collagen (Col1a1), connective tissue growth factor (Ctgf/ccn2) and fibronectin (Fn1). Immunofluorescence and Western blot analysis was further employed to visualize changes in protein expression of alpha-smooth muscle actin (α-SMA), CTGF/CCN2 and fibronectin. mRNA levels of Col1a1, Ctgf/ccn2, and FN did not increase following treatment with VEGF in fibroblasts derived from either diaphragm or gastrocnemius muscles. Acta2 expression increased significantly in diaphragm-derived fibroblasts following treatment with VEGF. Morphological assessment revealed increased stress fiber formation in VEGF-treated fibroblasts compared to the untreated control fibroblasts. The findings from this study suggest that further investigation into the effect of VEGF on fibroblast function is required prior to the utilization of the growth factor as a treatment for DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DMD:

Duchenne muscular dystrophy

VEGF:

Vascular endothelial growth factor

TGFβ:

Transforming growth factor beta

Col1a1 :

Type I collagen (mRNA)

αSMA:

Alpha-smooth muscle actin

Acta2 :

Alpha-smooth muscle actin (mRNA)

Ctgf/ccn2 :

Connective tissue growth factor (mRNA)

CTGF/CCN2:

Connective tissue growth factor

Fn1 :

Fibronectin (mRNA)

FN:

Fibronectin

qPCR:

Quantitative polymerase chain reaction

References

  • Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A et al (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10:844–854

    Article  PubMed  CAS  Google Scholar 

  • Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12(2):165–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beckman SA, Chen WC, Tang Y, Proto JD, Mlakar L, Wang B et al (2013) Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 33(8):2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M et al (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96(2):1137–1144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW et al (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107:3287–3292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouchentouf M, Benabdallah BF, Bigey P, Yau TM, Scherman D, Tremblay JP (2008) Vascular endothelial growth factor reduced hypoxia-induced death of human myoblasts and improved their engraftment in mouse muscles. Gene Ther 6:404–414

    Article  Google Scholar 

  • Chen YW, Nagaraju K, Bakay M, McIntyre O, Rawat R, Shi R et al (2005) Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 65(6):826–834

    Article  PubMed  CAS  Google Scholar 

  • Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17:1788–1798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L et al (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90(4):717–727

    Article  PubMed  CAS  Google Scholar 

  • Desguerre I, Mayer M, Leturcq F, Barbet JP, Gherardi RK, Christov C (2009) Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with macrophage alternative activation. J Neuropathol Exp Neurol 68:762–773

    Article  PubMed  Google Scholar 

  • Desguerre I, Arnold L, Vignaud A, Cuvellier S, Yacoub-Youssef H, Gherardi RK et al (2012) A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy. Muscle Nerve 45(6):803–814

    Article  PubMed  Google Scholar 

  • Goerges AL, Nugent MA (2004) pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J Biol Chem 279:2307–2315

    Article  PubMed  CAS  Google Scholar 

  • Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S, Wilton SD et al (2010) Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther 18(1):198–205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D, Garcia L et al (2012) Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 21(11):2559–2571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grady RM, Merlie JP, Sanes JR (1997a) Subtle neuromuscular defects in utrophin-deficient mice. J Cell Biol 136(4):871–882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997b) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90(4):729–738

    Article  PubMed  CAS  Google Scholar 

  • Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10(8):828–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gutpell KM, Hrinivich WT, Hoffman LM (2015) Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy. PLoS ONE 10(1):e0117306

    Article  PubMed  PubMed Central  Google Scholar 

  • Hostettler KE, Zhong J, Papakonstantinou E, Karakiulakis G, Tamm M, Seidel P et al (2014) Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res 15:157–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang P, Cheng G, Lu H, Aronica M, Ransohoff RM, Zhou L (2011) Impaired respiratory function in mdx and mdx/utrn(+/-) mice. Muscle Nerve 43(2):263–267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Konieczny P, Swiderski K, Chamberlain JS (2013) Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 47(5):649–663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuiper EJ, Hughes JM, Van Geest RJ, Vogels I, Goldschmeding R, Van Noorden C et al (2007) Effect of VEGF-A on expression of profibrotic growth factor and extracellular matrix genes in the retina. Invest Ophthalmol Vis Sci 48(9):4267–4276

    Article  PubMed  Google Scholar 

  • Maurer B, Distler A, Suliman YA, Gay RE, Michel BA, Gay S et al (2014) Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis 73(10):1880–1887

    Article  PubMed  Google Scholar 

  • Messina S, Mazzeo A, Bitto A, Aguennouz M, Migliorato A, De Pasquale MG et al (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21(13):3737–3746

    Article  PubMed  CAS  Google Scholar 

  • Mezzano V, Cabrera D, Vial C, Brandan E (2007) Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to TGF-β and CTGF/CCN2. J Cell Commun Signal 1(3):205–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ikeda S (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20(9):1787–1799

    Article  PubMed  CAS  Google Scholar 

  • Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutiérrez J, Serrano AL et al (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne muscular dystrophy. Skelet Muscle 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhoads RP, Flann KL, Cardinal TR, Rathbone CR, Liu X, Allen RE (2013) Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem Biophys Res Commun 440(3):399–404

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Motohashi Y, Asakura A (2014) Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol 5:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539

    Article  PubMed  CAS  Google Scholar 

  • Taylor SC, Berkelman T, Yadav G, Hammond M (2013) A defined methodology for reliable quantification of western blot data. Mol Biotechnol 55(3):217–226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Putten M, Kumar D, Hulsker M, Hoogaars WM, Plomp JJ, van Opstal A et al (2012) Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains. Neuromuscul Disord 22(5):406–417

    Article  PubMed  Google Scholar 

  • Vempati P, Popel AS, Mac Gabhann F (2014) Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 25(1):1–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K et al (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31

    Article  PubMed  CAS  Google Scholar 

  • Wijelath ES, Rahman S, Murray J, Patel Y, Savidge G, Sobel M (2004) Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells. J Vasc Surg 39:655–660

    Article  PubMed  Google Scholar 

  • Zhou L, Rafael-Fortney JA, Huang P, Zhao XS, Cheng G, Zhou X et al (2008) Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 264(1–2):106–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Robert Grange from Virginia Tech, Virginia for generously providing us with the mdx/utrn+/- mice. We would also like to acknowledge Terrie Ann and Dale Forder at the St. Joseph’s Animal Care Facility for assistance with animal care and Dr. Justin Crawford for technical assistance.

Author contributions

KG carried out the experimental work and performed the statistical analysis. KG and LH conceived and designed the study and drafted the manuscript. Both authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutpell, K.M., Hoffman, L.M. VEGF induces stress fiber formation in fibroblasts isolated from dystrophic muscle. J. Cell Commun. Signal. 9, 353–360 (2015). https://doi.org/10.1007/s12079-015-0300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0300-z

Keywords

Navigation