Skip to main content
Log in

Metabolic scaling theory in plant biology and the three oxygen paradoxa of aerobic life

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Alfred Russell Wallace was a field naturalist with a strong interest in general physiology. In this vein, he wrote that oxygen (O2), produced by green plants, is “the food of protoplasm, without which it cannot continue to live”. Here we summarize current models relating body size to respiration rates (in the context of the metabolic scaling theory) and show that oxygen-uptake activities, measured at 21 vol.% O2, correlate closely with growth patterns at the level of specific organs within the same plant. Thus, whole plant respiration can change ontogenetically, corresponding to alterations in the volume fractions of different tissues. Then, we describe the evolution of cyanobacterial photosynthesis during the Paleoarchean, which changed the world forever. By slowly converting what was once a reducing atmosphere to an oxidizing one, microbes capable of O2-producing photosynthesis modified the chemical nature and distribution of the element iron (Fe), slowly drove some of the most ancient prokaryotes to extinction, created the ozone (O3) layer that subsequently shielded the first terrestrial plants and animals from harmful UV radiation, but also made it possible for Earth’s forest to burn, sometimes with catastrophic consequences. Yet another paradox is that the most abundant protein (i.e., the enzyme Rubisco, Ribulose-1,5-biphosphate carboxylase/oxygenase) has a greater affinity for oxygen than for carbon dioxide (CO2), even though its function is to bind with the latter rather than the former. We evaluate this second “oxygen paradox” within the context of photorespiratory carbon loss and crop yield reduction in C3 vs. C4 plants (rye vs. maize). Finally, we analyze the occurrence of reactive oxygen species (ROS) as destructive by-products of cellular metabolism, and discuss the three “O2-paradoxa” with reference to A. R. Wallace’s speculations on “design in nature”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Apel K, Hirt K (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W, Beckett PM (2011) Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. New Phytol 190:431–444

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (2009) Phanerozoic atmospheric oxygen: new results using the geocarbsulf model. Amer J Sci 309:603–606

    Article  CAS  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC et al (2009) Fire in the earth system. Science 324:481–484

    Article  PubMed  CAS  Google Scholar 

  • Boyle R (1660) Experimentia nova physico-mechanica degravitate et elatere aeris. H. Hall, Oxford

  • Cavalier-Smith T (2010) Deep phylogeny, ancestral groups and the four ages of life. Phil Trans R Soc B 365:111–132

    Article  PubMed  Google Scholar 

  • Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    PubMed  CAS  Google Scholar 

  • Davies KJA (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  • Decker H, van Holde KE (eds) (2010) Oxygen and the evolution of life. Springer, New York

    Google Scholar 

  • FAO (2007) Statistical Yearbook 2005–2006. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science 119:623–626

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Glasspool IJ, Edwards D, Axe L (2004) Charcoal in the Silurian as evidence for the earliest wildfires. Geology 32:381–383

    Article  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the ontophagy-inflamation-cell death axis in organismal aging. Science 333:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Höxtermann E, Hilger HH (Hg) (2007) Lebenswissen. Eine Einführung in die Geschichte der Biologie. Natur & Text in Brandenburg GmbH, Rangsdorf

  • John F, Roffler S, Wicker T, Ringli C (2011) Plant TOR signaling components. Plant Signal Behav 6:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci USA 110:11238–11243

    Article  PubMed  CAS  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–351

    CAS  Google Scholar 

  • Kleiber M (1961) The fire of life: An introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Koch LG, Britton SL (2008) Aerobic metabolism underlies complexity and capacity. J Physiol 586:83–95

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2009) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci 128:191–203

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2011) From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct 6(33):1–20

    Google Scholar 

  • Kutschera U (2013) The age of man: a father figure. Science 340:1287

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Elliott JM (2013) Do mudskippers and lungfishes elucidate the early evolution of four-limbed vertebrates? Evo Edu Outreach 6(8):1–8

    Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2006) Photosynthesis research on yellowtops: macroevolution in progress. Theory Biosci 125:81–92

    PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2011) Ontogenetic changes in the scaling of cellular respiration with respect to size among sunflower seedlings. Plant Signal Behav 6:72–76

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2012) Organ-specific rates of cellular respiration in developing sunflower seedlings and their bearing on metabolic scaling theory. Protoplasma 249:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Wang Z-Y (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511–3522

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Deng Z, Oses-Prieto JA, Burlingame AL, Wang Z-Y (2010a) Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings. A quantitative proteomic analysis. Plant Signal Behav 5:509–517

    CAS  Google Scholar 

  • Kutschera U, Pieruschka R, Berry JA (2010b) Leaf development, gas exchange characteristics, and photorespiratory activity in maize seedlings. Photosynthetica 48:617–622

    Article  CAS  Google Scholar 

  • Lane N (2011) The costs of breathing. Science 334:184–185

    Article  PubMed  CAS  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  PubMed  CAS  Google Scholar 

  • Managhan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements, and interpretation. Ecol Lett 12:75–92

    Article  Google Scholar 

  • Marchal K, Van der Leyden J (2000) The “oxygen paradox” of dinitrogen-fixing bacteria. Biol Fertil Soils 30:363–373

    Article  CAS  Google Scholar 

  • Matzke NJ (2010) The evolution of creationist movements. Evo Edu Outreach 3:145–162

    Article  Google Scholar 

  • Mayow J (1674) Tractatus quinque medico-physici. ETheatro Sheldiniano, Oxford

  • Niklas KJ (1994) Plant allometry. The scaling of form and process. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889

    Article  PubMed  Google Scholar 

  • Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695

    Article  Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ, Kutschera U (2012) Plant morphogenesis, auxin, and the network incompleteness theorem. Front Plant Sci 3(37):1–11

    Google Scholar 

  • Niklas KJ, Spatz H-C (2012) Plant physics. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Noffke N, Decho AW, Stoodle P (2013) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5

    Article  Google Scholar 

  • Nunnari J, Snomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  PubMed  CAS  Google Scholar 

  • Okie JG (2013) General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. Amer Nat 181:421–439

    Article  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Andralojc PD, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvements. J Exp Bot 64:717–730

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer W (1897/1904) Pflanzenphysiologie. Ein Handbuch der Lehre vom Stoffwechsel und Kraftwechsel in der Pflanze. Band I: Stoffwechsel, Band II: Kraftwechsel. 2. Auflage. Verlag Wilhelm Engelmann, Leipzig

  • Price CA, Gillooly JF, Allen AP, Weitz JS, Niklas KJ (2010) The metabolic theory of ecology: prospects and challenges for plant biology. New Phytol 188:696–710

    Article  PubMed  Google Scholar 

  • Priestley J (1774) Experiments and observations on different kinds of air, vol I. J. Johnson, London

  • Priestley J (1775) Experiments and observations on different kinds of air, vol II. J. Johnson, London

  • Raven JA (2013) Rubisco: still the most abundant protein on Earth? New Phytol 198:1–3

    Article  PubMed  CAS  Google Scholar 

  • Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000

    Article  PubMed  CAS  Google Scholar 

  • Schloss JV (2002) Oxygen toxicity from plants to people. Planta 216:38–43

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14:777–793

    Article  CAS  Google Scholar 

  • Schofield RE (2004) The enlightened Joseph Priestley: A study of his life and work from 1773 to 1804. Pennsylvania State University Press, Pennsylvania

    Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence for the antiquity of life. Science 260:640–646

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101

    Article  CAS  Google Scholar 

  • Schopfer P, Liszkay A (2006) Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants. BioFactors 28:73–81

    Article  PubMed  CAS  Google Scholar 

  • Scott EC (2010) Evolution vs. creationism. An introduction. 2nd edn. University of California Press, Berkeley

  • Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103:10861–10865

    Article  PubMed  CAS  Google Scholar 

  • Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548

    Article  PubMed  CAS  Google Scholar 

  • Tanaka JY, Choi AM, Ryter SW (2012) Autophagic proteins: new facets of the oxygen paradox. Autophagy 8:426–428

    Article  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  PubMed  CAS  Google Scholar 

  • Walker D (1990) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis. Oxygraphics Limited, Sheffield

    Google Scholar 

  • Wallace AR (1903) Man’s place in the universe. A study of the results of scientific research in relation to the unity or plurality of worlds. Chapman & Hall, London

    Google Scholar 

  • Wallace AR (1910) The world of life. A manifestation of creative power, directive mind and ultimate purpose. Chapman & Hall, London

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  PubMed  CAS  Google Scholar 

  • Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704–708

    Article  PubMed  CAS  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation, Bonn, Germany (AvH Fellowships Stanford 2011/2012 to UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kutschera.

Additional information

This article is a contribution to the Special issue Alfred Russel Wallace (1823–1913): The man in the shadow of Charles Darwin—Guest Editors U. Kutschera, U. Hossfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutschera, U., Niklas, K.J. Metabolic scaling theory in plant biology and the three oxygen paradoxa of aerobic life. Theory Biosci. 132, 277–288 (2013). https://doi.org/10.1007/s12064-013-0194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-013-0194-3

Keywords

Navigation