Skip to main content
Log in

Symbiogenesis, natural selection, and the dynamic Earth

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin’s proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky–Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative ‘synade-model’ of macroevolution which takes into account organisms from all five Kingdoms of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel O (1906) Fossile Flugfische. Jb Geol Reichsanstalt 56:1–93

    Google Scholar 

  • Altwegg R, Reyer H-U (2003) Patterns of natural selection on size at metamorphosis in waterfrogs. Evolution 57:872–882

    PubMed  Google Scholar 

  • Bao H, Lyons JR, Zhou C (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453:504–506

    Article  CAS  PubMed  Google Scholar 

  • Barnes RSK (ed) (1998) The diversity of living organisms. Blackwell Science, Oxford

  • Baumiller TK, Gahn FJ (2004) Testing predator-driven evolution with Paleozoic Crinoid arm regeneration. Science 305:1453–1455

    Article  CAS  PubMed  Google Scholar 

  • Beccaloni GW, Smith VS (2008) Celebrations for Darwin downplay Wallace’s role. Nature 451:1050

    Article  CAS  PubMed  Google Scholar 

  • Bell G (1997) Selection: the mechanism of evolution. Chapman & Hall, New York

    Google Scholar 

  • Benton MJ (2003) When life nearly died: the greatest mass extinction of all time. Thames & Hudson, London

    Google Scholar 

  • Benton MJ (2005) Vertebrate palaeontology, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Benton MJ (2009) The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–732

    Article  CAS  PubMed  Google Scholar 

  • Berner D, Adams DC, Grandchamp A-C, Hendry AP (2008) Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Borda E, Oceguera-Figueroa A, Siddall ME (2008) On the classification, evolution and biogeography of terrestrial haemadipsoid leeches (Hirudinida: Arhynchobdellida: Hirudiniformes). Mol Phylogenet Evol 46:142–154

    Article  PubMed  Google Scholar 

  • Bös W, Kunz R (2002) Geologische Sehenswürdigkeiten im Wolfhager Land. Landkreis Kassel—Untere Naturschutzbehörde, Wolfhagen

    Google Scholar 

  • Botha J, Smith RMH (2007) Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa. Lethaia 40:125–137

    Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes—comparative genomics of the green branch of life. Cell 129:229–234

    Article  CAS  PubMed  Google Scholar 

  • Bralower TJ (2008) Volcanic cause of catastrophe. Nature 454:285–287

    Article  CAS  PubMed  Google Scholar 

  • Cameron EZ, du Toit JT (2007) Winning by neck: tall giraffes avoid competing with shorter browsers. Am Nat 169:130–139

    Article  PubMed  Google Scholar 

  • Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32

    Article  PubMed  Google Scholar 

  • Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. Norton, New York

    Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  CAS  PubMed  Google Scholar 

  • Cutler A (2003) The seashell on the mountaintop. Dutton, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. I. Extract from an unpublished work on species, II. Abstract of a letter from C. Darwin, Esq., to Prof. Asa Gray. III. On the tendency of varieties to depart indefinitely from the original type. J Proc Linn Soc Lond 3:45–62

    Google Scholar 

  • Dobzhansky T (1955) Evolution, genetics, and man. Wiley, New York

    Google Scholar 

  • Eldredge N (1989) Macroevolutionary dynamics. Species, niches and adaptive peaks. McGraw-Hill, New York

    Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Falkowski PG, Isozaki Y (2008) The story of O2. Science 322:540–542

    Article  CAS  PubMed  Google Scholar 

  • Fischer WW (2008) Life before the rise of oxygen. Nature 455:1051–1052

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Geus A, Höxtermann E (2007) Evolution durch Kooperation und Integration. Zur Entstehung der Endosymbiosetheorie in der Zellbiologie. Basilisken-Presse, Marburg

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge University Press, Cambridge

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2008) Evolution as fact, theory and path. Evo Edu Outreach 1:46–52

    Article  Google Scholar 

  • Guo J (2008) Fire and life. Nature 454:930–932

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E (1877) Anthropogenie oder Entwicklungsgeschichte des Menschen. W. Engelmann, Leipzig

    Google Scholar 

  • Haffer J (2007) Ornithologie, evolution, and philosophy. The life and science of Ernst Mayr 1904–2005. Springer, Berlin

    Google Scholar 

  • Hendry AP (2005) The power of natural selection. Nature 433:694–695

    Article  PubMed  Google Scholar 

  • Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hardean plate boundary interactions. Nature 456:493–496

    Article  CAS  PubMed  Google Scholar 

  • Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700–710

    Article  PubMed  Google Scholar 

  • Irving E (2005) The role of latitude in mobilism debates. Proc Natl Acad Sci USA 102:1821–1828

    Article  CAS  PubMed  Google Scholar 

  • Jablonski D (2008) Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:715–739

    Article  PubMed  Google Scholar 

  • Jost J (2003) On the notion of fitness, or: the selfish ancestor. Theory Biosci 121:331–350

    Google Scholar 

  • Kennedy M, Mrofka D, van der Borch C (2008) Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453:642–645

    Article  CAS  PubMed  Google Scholar 

  • Klingsolver JG, Pfennig D (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572

    Article  Google Scholar 

  • Knoll AH (2003) Life on a young planet. The first three billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Kring DA (2007) The Chixulub impact event and its environmental consequences at the K/T boundary. Paleogeogr Paleoclimatol Paleoecol 255:4–21

    Article  Google Scholar 

  • Kutschera U (2003) A comparative analysis of the Darwin–Wallace papers and the development of the concept of natural selection. Theory Biosci 122:343–359

    Google Scholar 

  • Kutschera U (2005) Predator-driven macroevolution in flyingfishes inferred from behavioural studies: historical controversies and a hypothesis. Ann Hist Philos Biol 10:59–77

    Google Scholar 

  • Kutschera U (2007) Paleobiology: the origin and evolution of a scientific discipline. Trends Ecol Evol 22:172–173

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2008a) Darwin–Wallace principle of natural selection. Nature 453:27

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2008b) From Darwinism to evolutionary biology. Science 321:1157–1158

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137

    Google Scholar 

  • Kutschera U, Pfeiffer I, Ebermann E (2007) The European land leech: biology and DNA-based taxonomy of a rare species that is threatened by climate warming. Naturwissenschaften 94:957–974

    Google Scholar 

  • LeGrand HE (1988) Drifting continents and shifting theories. Cambridge University Press, Cambridge

    Google Scholar 

  • Levin HL (2003) The Earth through time, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Levit GS, Simunek M, Hoßfeld U (2008) Psychoontogeny and psychophylogeny: Berhard Rensch’s (1900–1990) selectionist turn through the prism of panpsychistic identism. Theory Biosci 127:297–322

    Article  PubMed  Google Scholar 

  • Majerus MEN (2009) Industrial melanism in the peppered moth, Biston betularia: an excellent teaching example of Darwinian evolution in action. Evo Edu Outreach 2:63–74

    Article  Google Scholar 

  • Majerus MEN, Mundy NI (2003) Mammalian melanism: natural selection in black and white. Trends Genet 19:585–588

    Article  CAS  PubMed  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. Microbial communities in the Archean and Proterozoic eons, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  • Margulis L (1996) Archaeal–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Margulis L, Schwartz KV (1998) Five kingdoms. An illustrated guide to the phyla of life on earth, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Mayr E (1984) The growth of biological thought. Diversity, evolution and inheritance. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (2001) What evolution is. Basic Books, New York

    Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604, 689–691

    Google Scholar 

  • Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30:278–303, 321–347, 353–367

    Google Scholar 

  • Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci USA 104:12235–12242

    Article  CAS  PubMed  Google Scholar 

  • Nield T (2007) Supercontinent. Ten billion years in the life of our planet. Harvard University Press, Cambridge

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Oxford University Press, New York

    Book  Google Scholar 

  • Pearson A (2008) Who lives in the sea floor? Nature 454:952–953

    Article  CAS  PubMed  Google Scholar 

  • Pielou EC (1979) Biogeography. Wiley, New York

    Google Scholar 

  • Probst E (1986) Deutschland in der Urzeit. Von der Entstehung des Lebens bis zum Ende der Eiszeit. C. Bertelsmann Verlag, München

    Google Scholar 

  • Retallack GJ, Greaver T, Jahren AH (2007) Return to Coalsack Bluff and the Permian-Triassic boundary in Antarctica. Global Planet Change 55:90–108

    Article  Google Scholar 

  • Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  PubMed  Google Scholar 

  • Sapp J, Carrapico F, Zolotonosov M (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist Philos Life Sci 24:413–440

    Article  PubMed  Google Scholar 

  • Scheiner SM, Willig MR (2008) A general theory of ecology. Theor Ecol 1:21–28

    Article  Google Scholar 

  • Schopf WJ (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885

    Article  CAS  PubMed  Google Scholar 

  • Seeley RH (1996) Intense natural selection caused by a rapid morphological transition in a living marine snail. Proc Natl Acad Sci USA 83:6897–6901

    Article  Google Scholar 

  • Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147

    Article  CAS  PubMed  Google Scholar 

  • Shermer M (2002) In Darwin’s shadow: the life and science of Alfred Russel Wallace. Oxford University Press, Oxford

    Google Scholar 

  • Snider-Pellegrini A (1858) La Création et ses mystères dévoilés. Franck et Dentu, Paris

    Google Scholar 

  • Steinberger B (2008) Reconstructing earth history in three dimensions. Science 322:866–868

    Article  CAS  PubMed  Google Scholar 

  • Storey W, Duncan R, Swisher CC (2007) Paleocene–Eocene thermal maximum and the opening of the northeast atlantic. Science 316:587–589

    Article  CAS  PubMed  Google Scholar 

  • Thurnheer S, Reyer H-U (2000) Spatial distribution and survival rate of waterfrog tadpoles in relation to biotic and abiotic factors: a field experiment. Amphib Reptil 22:21–32

    Article  Google Scholar 

  • Van Bocxlaer B, van Damme D, Feibel CS (2008) Gradual versus punctuated equilibrium evolution in the Turkana basin mollusks: evolutionary events or biological invasions? Evolution 62:511–520

    Article  PubMed  Google Scholar 

  • Wallace AR (1889) Darwinism. An exposition of the theory of natural selection with some of its applications. MacMillan, New York

    Google Scholar 

  • Wallin IE (1927) Symbionticism and the origin of species. Bailliere, Tindall & Cox, London

    Google Scholar 

  • Wegener A (1929) Die Entstehung der Kontinente und Ozeane. 4. Auflage. F. Vieweg & Sohn, Braunschweig

  • Westall F (2009) Life on an anaerobic planet. Science 323:471–472

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  Google Scholar 

  • Wildman DE, Uddin M, Opazo JC, Liu G, Levort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007) Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395–14400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Prof. J. Jost (MPI Mathematics in the Sciences, Leipzig, Germany) for helpful comments on an earlier version of the manuscript and the Alexander von Humboldt-Stiftung (Bonn, Germany) for financial support (AvH-fellowship 2007/Stanford, California, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kutschera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutschera, U. Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci. 128, 191–203 (2009). https://doi.org/10.1007/s12064-009-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-009-0065-0

Keywords

Navigation