Skip to main content
Log in

Comparative Expression Analysis of Reference Genes in Field-Grown Cassava

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Due to its accuracy, sensitivity and reproducibility, real-time PCR has emerged as a key technique to measure changes in expression of target genes. But to obtain reliable results using real-time PCR, gene transcripts that do not alter its expression under different conditions need to be identified. These transcripts can then be used as references to normalize the expression of target genes. Only a few studies have been conducted so far in the identification of such reference genes in plants. In an effort to identify appropriate reference genes, cassava, an important food source in the tropics and an excellent crop against famine and drought, was assessed for its capacity to express eight housekeeping genes in leaves, stems and roots at four different stages of development under field conditions. The eight candidate genes tested were rRNA18S(18S), β-tubulin(TUB), actin 11(ACT), elongation factor 1α(EF1), translation initiation factor 5A(F5A), ubiquitin protein ligase E3-2a(UBI), ubiquitin conjugating enzyme E2-10(U10) and ubiquitin conjugating enzyme E2-35(U35). Data analysis was performed using four approaches commonlyemployed in identifying the reference genes and consensus rankings were generated using the output of each independent approach. EF1 and TUB were the most stable genes when all tissues and developmental stages were analyzed together. At different stages of development, UBI/18S, EF1/U35, TUB/U35werethe most stable genes in roots, leaves and stem tissues, respectively. Our results suggest the use of more than one reference gene in gene expression studies involving different tissues at different developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT:

Actin 11 gene

DAP:

Days after planting

EF1:

Elongation factor 1α gene

F5A:

Translation initiation factor 5A gene

HKG:

Housekeeping genes

SD:

Standard deviation

TUB:

β-tubulin gene

U10:

Ubiquitin conjugating enzyme E2-10 gene

U35:

Ubiquitin conjugating enzyme E2-35gene

UBI:

Ubiquitin protein ligase E3-2a gene

18S:

rRNA18S gene

References

  • Alves CA (2002) Cassava botany and physiology. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI, New York, pp 67–90

    Chapter  Google Scholar 

  • Andersen C, Jensen J, Ørntoft T (2004) Normalization of real-time quantitative reverse transcription PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O et al (2010) Identification and evaluation of new reference genes in Gossypiumhirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Beekman L, Tohver T, Dardari R et al (2011) Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. BMC Mol Biol 12:5–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beltrán J, Jaimes H, Echeverry M et al (2008) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant 45:48–56

    Article  Google Scholar 

  • Beltrán J, Prías M, Al-Babili S et al (2010) Expression pattern conferred by a glutamic acid-rich protein gene promoter in weld-grown transgenic cassava (ManihotesculentaCrantz). Planta 231:1413–1424

    Article  PubMed  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M et al (2009) Agrobacterium-mediated transformation of friable embryogeniccalli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T et al (2005) Genome-wide identification and testing of superior referencegenes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte Silveira É, Alves-Ferreira M, Guimarães L et al (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiariabrizantha. BMC Plant Biol 9:84–93

    Article  Google Scholar 

  • Echeverry M (2008) Quantification of transcriptional activity of genes associated with cyanogenesis in cassava (ManihotesculentaCrantz). Dissertation. University of Puerto Rico, Mayaguez

  • Echeverry M, Ocasio-Ramirez V, Figueroa A et al (2013) Expression profiling of genes associated with cyanogenesis in three cassava cultivars containing varying levels of toxic cyanogens. Amer J Plant Sci 4:1533–1545

    Article  Google Scholar 

  • Eggermont K, Goderis IJ, Broekaert WF (1996) High-throughput RNAextraction from plant samples based on homogenization by reciprocal shaking in the presence of a mixture of sand and glass beads. Plant Mol Biol Rep 14:273–279

    Article  CAS  Google Scholar 

  • Eggum BO (1970) The protein quality of cassava leaves. Brit J Nutr 24:761–768

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Linkies A, Wood A et al (2011) A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with aBrassicaceaecross-species seed germination case study. Plant Cell 23:2045–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halsey ME, Olsen KM, Taylor NJ et al (2008) Reproductive biology of cassava (ManihotesculentaCrantz). Crop Sci 48:49–58

    Article  Google Scholar 

  • He JQ, Sandford AJ, Wang IM et al (2008) Election of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells. Eur Respir J 32:755–762

    Article  PubMed  Google Scholar 

  • Ihemere U, Arias-Garzon D, Lawrence S et al (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J4:453–465

    Article  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK et al (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen K, Morant A, Morant M et al (2005) Cassava plants with a depletedcyanogenicglucosidecontent in leaves and tubers. Distribution of cyanogenicglucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol 139:363–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lancaster P, Brooks J (1983) Cassava leaves as human food. Econ Bot 37:331–348

    Article  Google Scholar 

  • Li QF, Sun SSM, Yuan DY et al (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 28:49–57

    Article  Google Scholar 

  • Liu J, Zheng Q, Ma Q et al (2011) Cassava genetic transformation and its application in breeding. J Integr Plant Biol 53:552–569

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Soto M, Restrepo S et al (2005) Gene expression profile in response to Xanthomonasaxonopodispv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol 57:393–410

    Article  CAS  PubMed  Google Scholar 

  • Mallona I, Lischewski S, Weiss J et al (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrid. BMC Plant Biol 10:4–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Nassar NMA, Marques AO (2006) Cassava leaves as a source of protein. J Agric Environ 4:187–189

    Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L et al (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Patil B, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Mol Plant Path 12:31–41

    Article  CAS  Google Scholar 

  • Ogwok E, Odipio J, Halsey M et al (2012) Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Mol Plant Path 13:1019–1031

    Article  CAS  Google Scholar 

  • Ojulong H, Labuschangne MT, Fregene M et al (2008) A cassava clonal evaluation trial based on new cassava breeding scheme. Euphytica 160:119–129

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res 29:9e45

    Article  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper –Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Prochnik S, Reddy Marri P, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Putten H, Sudarmonowati E, Herman M et al (2012) Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia. Transgenic Res 21:39–50

    Article  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB et al (2011) The BioCassavaPlus Program: biofortification of cassava for sub-saharan Africa. Ann Rev Plant Biol 62:251–272

    Article  CAS  Google Scholar 

  • Silver N, Best S, Jiang J et al (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Siritunga D, Sayre R (2003) Generation of cyanogen-free transgenic cassava. Planta 217:367–373

    Article  CAS  PubMed  Google Scholar 

  • Siritunga D, Sayre R (2004) Engineering cyanogen synthesis andturnover in cassava (Manihot esculenta). Plant Mol Biol 56:661–669

    Article  CAS  PubMed  Google Scholar 

  • Siritunga D, Arias-Garzon D, White W et al (2004) Over-expression of hydroxyl nitrilelyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotechnol J 2:37–43

    Article  CAS  PubMed  Google Scholar 

  • Ståhlberg A, Elbing K, Andrade-Garda JM et al (2008) Multiwayreal-time PCR gene expression profiling yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genomics 9:170–184

    Article  PubMed Central  PubMed  Google Scholar 

  • Stern-Straeter J, Bonaterra GA, Hörmann K et al (2009) Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol Biol 10:66–74

    Article  PubMed Central  PubMed  Google Scholar 

  • Suslov O, Steindler D (2005) PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res 33:20e181

    Article  Google Scholar 

  • Taylor NJ, Halsey M, Gaitán-Solís E et al (2012a) The VIRCA Project: virus resistant cassava for Africa. GM Crops Food 3:93–103

    Article  PubMed  Google Scholar 

  • Taylor NJ, Gaiton-Solis E, Moll T et al (2012b) A high-throughput platform for theproduction and analysis of transgeniccassava (Manihotesculenta) Plants. Trop Plant Biol 5:127–139. doi:10.1007/s12042-012-9099-4

    Article  CAS  Google Scholar 

  • Utsumi Y, Tanaka M, Morosawa T et al (2012) Transcriptomeanalysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an Important Tropical Crop. DNA Res 19:335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanderschuren H, Moreno I, Anjanappa RB et al (2012) Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS ONE 7:9, e45277

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Google Scholar 

  • Welsch R, Arango J, Bär C, Salazar B et al (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav J, Ogwok E, Wagaba H et al (2011) RNAi-mediatedresistance to cassava brown streak Uganda virus in transgenic cassava. Mol Plant Pathol 12:677–687

    Article  CAS  PubMed  Google Scholar 

  • Zainuddin I, Schlegel K, Gruissem W et al (2012) Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces. Plant Methods 8:24–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zidenga T, Leyva-Guerrero E, Moon H et al (2012) Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol 159:1396–1407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Vanderschuren H, Futterer J et al (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3:385–389

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Pedro Marquez, Director of the Isabela Agricultural Research Station (in Isabela, PR), and the field crew for proper maintenance of cassava plants. We also thank Dr. John Uscian (Department of Biology, University of Puerto Rico Mayaguez, Mayaguez, PR) for the critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimuth Siritunga.

Additional information

Communicated by: Paulo Arruda

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salcedo, A., Zambrana, C. & Siritunga, D. Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biol. 7, 53–64 (2014). https://doi.org/10.1007/s12042-014-9137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-014-9137-5

Keywords

Navigation