Skip to main content
Log in

Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Eight candidate housekeeping genes were examined as internal controls for normalizing expression analysis of durum wheat (Triticum durum L.) under drought and salinity stress conditions. Quantitative real-time PCR was used to analyse gene expression of multiple stress levels, plant ages (24 and 50 days old), and plant tissues (leaf and root). The algorithms BestKeeper, NormFinder, GeNorm, the delta Ct method and the RefFinder were applied to determine the stability of candidate genes. Under drought stress, the most stable reference genes were glyceraldehyde-3 phosphate, ubiquitin and \(\beta \)-tubulin2, whereas under salinity stress conditions, eukaryotic elongation factor 1-\(\alpha \), glyceraldehyde-3 phosphate and actin were identified as the most stable reference genes. Validation with stress-responsive genes NAC29 and NAC6 demonstrated that the expression level of target genes could be determined reliably with combinations of up to three of the reference genes. This is the first report on reference genes appropriate for quantification of target gene expression in T. durum under drought and salt stresses. Results of this investigation may be applicable to other Triticum species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdolshahi R., Safarian A., Nazari M., Pourseyedi S. and Mohamadi-Nejad G. 2013 Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Arch. Agron. Soil Sci. 59, 685–704.

    Article  Google Scholar 

  • Araus J., Slafer G., Reynolds M. and Royo C. 2002 Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89, 925–940.

    Article  Google Scholar 

  • Baloglu M. C., Oz M., Oktem H. A. and Yucel M. 2012 Expression analysis of TaNAC69-1 and TtNAMB-2, wheat NAC family transcription factor genes under abiotic stress conditions in durum wheat (Triticum turgidum). Plant Mol. Biol. Rep. 30, 1246–1252.

    Article  CAS  Google Scholar 

  • Brennan J. P., Aw-Hassan A., Quade K. J. and Nordblom T. L. 2002 Impact of ICARDA research on Australian agriculture. Econ. Res. Rep. 11, NSW Agriculture, Wagga Wagga.

  • Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M. et al. 2009 The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.

    Article  CAS  Google Scholar 

  • Cattivelli L., Rizza F., Badeck F.-W., Mazzucotelli E., Mastrangelo A. M., Francia E. et al. 2008 Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res. 105, 1–14.

    Article  Google Scholar 

  • Chen J., Rider D. A. and Ruan R. 2006 Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver. J. Gerontol. A Biol. Sci. Med. Sci. 61, 20–27.

    Article  Google Scholar 

  • Chen Y., Hu B., Tan Z., Liu J., Yang Z., Li Z. et al. 2015 Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses. Plant Cell Rep. 34, 1825–1834.

    Article  CAS  Google Scholar 

  • De Spiegelaere W., Dern-Wieloch J., Weigel R., Schumacher V., Schorle H., Nettersheim D. et al. 2015 Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One. 10, e0122515.

    Article  Google Scholar 

  • Dudley L. and Shani U. 2003 Modeling plant response to drought and salt stress. Vadose Zone J. 2, 751–758.

    Article  Google Scholar 

  • Fischer M., Skowron M. and Berthold F. 2005 Reliable transcript quantification by real-time reverse transcriptase-polymerase chain reaction in primary neuroblastoma using normalization to averaged expression levels of the control genes HPRT1 and SDHA. J. Mol. Diagn. 7, 89–96.

    Article  CAS  Google Scholar 

  • Gachon C., Mingam A. and Charrier B. 2004 Real-time PCR: what relevance to plant studies? J. Exp. Bot. 55, 1445–1454.

    Article  CAS  Google Scholar 

  • Galli V., Borowski J. M., Perin E. C., da Silva Messias R., Labonde J., dos Santos Pereira I. et al. 2015 Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554, 205–214.

    Article  CAS  Google Scholar 

  • Goossens K., Van Poucke M., Van Soom A., Vandesompele J., Van Zeveren A. and Peelman L. J. 2005 Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5, 27.

    Article  Google Scholar 

  • Guénin S., Mauriat M., Pelloux J., Van Wuytswinkel O., Bellini C. and Gutierrez L. 2009 Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 60, 487–493.

    Article  Google Scholar 

  • Guo J., Ling H., Wu Q., Xu L. and Que Y. 2014 The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci. Rep. 4, 7042.

    Article  CAS  Google Scholar 

  • Gutierrez L., Mauriat M., Guénin S., Pelloux J., Lefebvre J. F., Louvet R. et al. 2008 The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6, 609–618.

    Article  CAS  Google Scholar 

  • Huggett J., Dheda K., Bustin S. and Zumla A. 2005 Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6, 279–284.

    Article  CAS  Google Scholar 

  • Iskandar H. M., Simpson R. S., Casu R. E., Bonnett G. D., Maclean D. J. and Manners J. M. 2004 Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol. Biol. Rep. 22, 325–337.

    Article  CAS  Google Scholar 

  • Jain M., Nijhawan A., Tyagi A. K. and Khurana J. P. 2006 Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646–651.

    Article  CAS  Google Scholar 

  • Joshi S. and Nimbalkar J. 1983 Effect of salt stress on growth and yield in Cajanus cajan L. Plant Soil. 74, 291–294.

    Article  CAS  Google Scholar 

  • Kavousi H. R., Marashi H. and Bagheri A. 2009 Expression of phenylpropanoid pathway genes in chickpea defense against race 3 of Ascochyta rabiei. Plant Pathol. J. 8, 127–132.

    Article  CAS  Google Scholar 

  • Knight H. and Knight M. R. 2001 Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262–267.

    Article  CAS  Google Scholar 

  • Kumar K., Muthamilarasan M. and Prasad M. 2013 Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setariaitalica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult. 115, 13–22.

    Article  CAS  Google Scholar 

  • Li Q. F., Sun S. S., Yuan D. Y., Yu H. X., Gu M. H. and Liu Q. Q. 2010 Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol. Biol. Rep. 28, 49.

    Article  Google Scholar 

  • Ma S., Niu H., Liu C., Zhang J., Hou C. and Wang D. 2013 Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS One. 8, e75271.

    Article  CAS  Google Scholar 

  • Mafra V., Kubo K. S., Alves-Ferreira M., Ribeiro-Alves M., Stuart R. M., Boava L. P. et al. 2012 Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One. 7, e31263.

    Article  CAS  Google Scholar 

  • Mallona I., Lischewski S., Weiss J., Hause B. and Egea-Cortines M. 2010 Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 10, 4.

    Article  Google Scholar 

  • Manoli A., Sturaro A., Trevisan S., Quaggiotti S. and Nonis A. 2012 Evaluation of candidate reference genes for qPCR in maize. J. Plant Physiol. 169, 807–815.

    Article  CAS  Google Scholar 

  • Mir R. R., Zaman-Allah M., Sreenivasulu N., Trethowan R. and Varshney R. K. 2012 Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 125, 625–645.

    Article  CAS  Google Scholar 

  • Mittler R. 2006 Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19.

    Article  CAS  Google Scholar 

  • Mohammadi R., Farshadfar E. and Amri A. 2015 Interpreting genotype \(\times \) environment interactions for grain yield of rainfed durum wheat in Iran. Crop J. 3, 526–535.

    Article  Google Scholar 

  • Paolacci A. R., Tanzarella O. A., Porceddu E. and Ciaffi M. 2009 Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10, 11.

    Article  Google Scholar 

  • Pfaffl M. W., Tichopad A., Prgomet C. and Neuvians T. P. 2004 Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 26, 509–515.

    Article  CAS  Google Scholar 

  • Radonić A., Thulke S., Mackay I. M., Landt O., Siegert W. and Nitsche A. 2004 Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313, 856–862.

    Article  Google Scholar 

  • Shivhare R. and Lata C. 2016 Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci. Rep. 6, 23036.

    Article  CAS  Google Scholar 

  • Scholtz J. J. and Visser B. 2012 Reference gene selection for qPCR gene expression analysis of rust-infected wheat. Physiol. Mol. Plant Pathol. 81, 22–25.

    Article  Google Scholar 

  • Silver N., Best S., Jiang J. and Thein S. L. 2006 Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33.

    Article  Google Scholar 

  • Sinha P., Singh V. K., Suryanarayana V., Krishnamurthy L., Saxena R. K. and Varshney R. K. 2015 Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One. 10, e0122847.

    Article  Google Scholar 

  • Sun H. P., Li F., Ruan Q.-m. and Zhong X.-h. 2016 Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiol. Biochem. 108, 286–294.

    Article  CAS  Google Scholar 

  • Tuberosa R. 2012 Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3, 347.

    Article  Google Scholar 

  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. et al. 2002 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (https://doi.org/10.1186/gb-2002-3-7-research0034).

  • Volkov R. A., Panchuk I. I. and Schöffl F. 2003 Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54, 2343–2349.

    Article  CAS  Google Scholar 

  • Wei L., Miao H., Zhao R., Han X., Zhang T. and Zhang H. 2013 Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta 237, 873–889.

    Article  CAS  Google Scholar 

  • Xia N., Zhang G., Sun Y.-F., Zhu L., Xu L.-S., Chen X.-M. et al. 2010 TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol. Mol. Plant Pathol. 74, 394–402.

    Article  CAS  Google Scholar 

  • Yang Z., Chen Y., Hu B., Tan Z. and Huang B. 2015 Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS One. 10, e0119569.

    Article  Google Scholar 

  • Zhang S., Zeng Y., Yi X. and Zhang Y. 2016 Selection of suitable reference genes for quantitative RT-PCR normalization in the halophyte Halostachys caspica under salt and drought stress. Sci. Rep6, 30363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Ali Hadipour, Dr Arman Salehi and Dr Negar Salehi for editing this paper and especially Mrs Sheryl Nikpoor and Navid Jamshidi for their valuable comments. Also, we are thankful to anonymous referees who helped us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshidi Goharrizi Kiarash.

Additional information

Corresponding editor: R. S. Sangwan

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2327 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiarash, J.G., Wilde, H.D., Amirmahani, F. et al. Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J Genet 97, 1433–1444 (2018). https://doi.org/10.1007/s12041-018-1042-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-018-1042-5

Keywords

Navigation