Skip to main content
Log in

Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcross-recombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Anonymous 2013 The package of practices for crops of Punjab, rabi 2013–14. Punjab Agricultural University, Ludhiana, India.

  • Bansal M., Kaur S., Dhaliwal H., Chhuneja P., Bariana H. and Bansal U. 2016 Introgression of linked rust resistance genes Lr76 and Yr70 from Aegilops umbellulata to wheat chromosome 5DS. Plant Pathol. (http://dx.doi.org/10.1111/ppa.12549).

  • Chen X. M. 2005 Epidemiology and control of stripe rust (Puccinia striiformis f.sp. tritici) on wheat. Can. J. Plant Pathol. 27, 314–337.

    Article  Google Scholar 

  • Chen X. M. 2013 High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 4, 608–627.

    Article  Google Scholar 

  • Chhuneja P., Yadav B., Stirnweis D., Hurni S., Kaur S., Elkot A. F. et al. 2015 Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2. In Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. Theor. Appl. Genet. 128, 2099–2111.

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P., Kaur S. and Dhaliwal H. S. 2016 Introgression and exploitation of biotic stress tolerance from related wild species in wheat cultivars. In Molecular breeding for sustainable crop improvement (ed. V. R. Rajpal, S. Rama Rao and S. N. Raina), pp. 269–324. Springer International Publishing, Switzerland.

  • IWGSC 2014 A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788–1–1251788-11.

    Google Scholar 

  • Jiang J., Friebe B. and Gill B. S. 1994 Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212.

    Article  Google Scholar 

  • Jordan K. W., Wang S., Lun Y., Gardiner L. -J., MacLachlan R., Hucl P. et al. 2015 A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homeologous genomes. Genome Biol. 16, 48–1-18.

    Article  Google Scholar 

  • Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007 Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114, 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Letunic I., Doerks T. and Bork P. 2012 SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, 302–305.

    Article  Google Scholar 

  • Liu W., Rouse M., Friebe B., Jin Y., Gill B. S. and Pumphrey M. O. 2011 Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 19, 669– 682.

    Article  CAS  PubMed  Google Scholar 

  • Lorieux M. 2012 MapDisto: fast and efficient computation of genetic linkage maps. Mol. Breed. 30, 1231–1235.

    Article  CAS  Google Scholar 

  • McIntosh R. A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Somers J. et al. 2013 Catalogue of gene symbols for wheat. In KOMUGI-integrated wheat science database at http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.

  • Michelmore R. W., Paran I. and Kesseli R. V. 1991 Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88, 9828–9832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson R. F., Campbell A. B. and Hannah A. E. 1948 A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can. J. Res. 26, 496–500.

    Article  Google Scholar 

  • Riar A. K., Kaur S., Dhaliwal H. S., Singh K. and Chhuneja P. 2012 Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J. Genet. 91, 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne G. M., Herrera-Foessel S. A., Singh R. P., Huerta-Espino J., Lan C. X. and He Z. H. 2013 Quantitative trait loci of stripe rust resistance in wheat. Theor. Appl. Genet. 126, 2427–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears E. R. 1976 Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31–51.

    Article  CAS  PubMed  Google Scholar 

  • Solovyev V., Kosarev P., Seledsov I. and Vorobyev D. 2006 Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, 1–10.

    Article  Google Scholar 

  • Somers D. J., Isaac P. and Edwards K. 2004 A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Valkoun J., Hammer K., Kucerova D. and Bartos P. 1985 Disease resistance in the genus Aegilops L.—stem rust, leaf rust, stripe rust and powdery mildew. Kulturpflanze 33, 133–153.

    Article  Google Scholar 

  • Varshney R. K., Terauchi R. and McCouch S. R. 2014 Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol. 12, e1001883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips R. E. 2002 Map Chart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Xu L. S., Wang M. N., Cheng P., Kang Z. S., Hulbert S. H. and Chen X. M. 2013 Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor. Appl. Genet. 126, 523–533.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance provided by the USDA-ARS under the Project IN-ARS-842 and various grants from the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, are gratefully acknowledged. The continuous supply of the rust inoculum from Regional Research Station, Indian Institute of Wheat and Barley Research is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PARVEEN CHHUNEJA.

Additional information

Corresponding editor: Arun Joshi

[Toor P. I., Kaur S., Bansal M., Yadav B. and Chhuneja P. 2016 Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance. J. Genet. 95, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TOOR, P.I., KAUR, S., BANSAL, M. et al. Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance. J Genet 95, 933–938 (2016). https://doi.org/10.1007/s12041-016-0718-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0718-y

Keywords

Navigation