Skip to main content
Log in

Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.)

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allen R. D., Bernier F., Lessard P. A. and Beachy R. N. 1989 Nuclear factors interact with a soybean beta-conglycinin enhancer. Plant Cell 1, 623–631.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. 2003 Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abid G., Muhovski Y., Jacquemin J. M., Mingeot D., Sassi K., Toussaint A. et al. 2012 Characterization and expression profile analysis of a sucrose synthase gene from common bean (Phaseolus vulgaris L.) during seed development. Mol. Biol. Rep. 39, 1133–1143.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal M., Hao Y., Kapoor A., Dong C. H., Fujii H., Zheng X. and Zhu J. K. 2006 A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281, 37636–37645.

    Article  CAS  PubMed  Google Scholar 

  • Argout X., Salse J., Aury J. M., Guiltinan M. J., Droc G., Gouzy J. et al. 2011 The genome of Theobroma cacao. Nat. Genet. 43, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Bate N. and Twell D. 1998 Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37, 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Barratt D. H., Barber L., Kruger N. J., Smith A. M., Wang T. L. and Martin C. 2001 Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol. 127, 655–664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baud S., Vaultier M. N. and Rochat C. 2004 Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55, 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Baumann K., De Paolis A., Costantino P. and Gualberti G. 1999 The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11, 323–333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bieniawska Z., Paul Barratt D. H., Garlick A. P., Thole V., Kruger N. J., Martin C. et al. 2007 Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49, 810–828.

    Article  CAS  PubMed  Google Scholar 

  • Bruni R., Bianchini E., Bettarello L. and Sacchetti G. 2000 Lipid composition of wild Ecuadorian Theobroma subincanum Mart. seeds and comparison with two varieties of Theobroma cacao L. J. Agric. Food Chem. 48, 691–694.

    Article  CAS  PubMed  Google Scholar 

  • Buchel A. S., Brederode F. T., Bol J. F. and Linthorst H. J. M. 1999 Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol. Biol. 40, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Bucheli P., Rousseau G., Alvarez M., Laloi M. and McCarthy J. 2001 Developmental variation of sugars, carboxylic acids, purine alkaloids, fatty acids, and endoproteinase activity during maturation of Theobroma cacao L. seeds. J. Agric. Food Chem. 49, 5046–5051.

    Article  CAS  PubMed  Google Scholar 

  • Busk P. K. and Pages M. 1998 Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425–435.

    Article  CAS  PubMed  Google Scholar 

  • Chen A., He S., Li F., Li Z., Ding M., Liu Q. et al. 2012 Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol. 12, 85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M. and Zhu J. K. 2003 ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V., Schumaker K. and Zhu J. K. 2004 Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Cilas C., Machado R. and Motamayor J. -C. 2010 Relations between several traits linked to sexual plant reproduction in Theobroma cacao L.: number of ovules per ovary, number of seeds per pod, and seed weight. Tree Genet. Genomes 6, 219–226.

    Article  Google Scholar 

  • Coleman H. D., Yan J. and Mansfield S. D. 2009 Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. USA 106, 13118–13123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Aoust M. A., Yelle S. and Nguyen-Quoc B. 1999 Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11, 2407–2418.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eckardt N. A. 2013 The plant cell reviews alternative splicing. Plant Cell 25, 3639.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elmayan T. and Tepfer M. 1995 Evaluation in tobacco of the organ specificity and strength of the rol D promoter, domain A of the 35S promoter and the 35S 2 promoter. Transgenic Res. 4, 388–396.

    Article  CAS  PubMed  Google Scholar 

  • Fallahi H., Scofield G. N., Badger M. R., Chow W. S., Furbank R. T. and Ruan Y. L. 2008 Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J. Exp. Bot. 59, 3283–3295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filichkin S. A., Leonard J. M., Monteros A., Liu P. P. and Nonogaki H. 2004 A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134, 1080–1087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flagel L. E. and Wendel J. F. 2009 Gene duplication and evolutionary novelty in plants. New Phytol. 183, 557–564.

    Article  PubMed  Google Scholar 

  • Frugoli J. A., McPeek M. A., Thomas T. L. and McClung C. R. 1998 Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149, 355–365.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilmartin P. M., Sarokin L., Memelink J. and Chua N. H. 1990 Molecular light switches for plant genes. Plant Cell 2, 369– 378.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grace M. L., Chandrasekharan M. B., Hall T. C. and Crowe A. J. 2004 Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J. Biol. Chem. 279, 8102–8110.

    Article  CAS  PubMed  Google Scholar 

  • Green P. J., Yong M. H., Cuozzo M., Kano-Murakami Y., Silverstein P. and Chua N. H. 1988 Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J. 7, 4035–4044.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grotewold E., Drummond B. J., Bowen B. and Peterson T. 1994 The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.

    Article  CAS  PubMed  Google Scholar 

  • Haigler C., Ivanova-Datcheva M., Hogan P., Salnikov V., Hwang S., Martin K. et al. 2001 Carbon partitioning to cellulose synthesis. Plant Mol. Biol. 47, 29–51.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann U., Sagasser M., Mehrtens F., Stracke R. and Weisshaar B. 2005 Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Hill L. M. and Rawsthorne S. 2000 Carbon supply for storage-product synthesis in developing seeds of oilseed rape. Biochem. Soc. Trans. 28, 667–669.

    Article  CAS  PubMed  Google Scholar 

  • Hirose T., Scofield G. N. and Terao T. 2008 An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 174, 534–543.

    Article  CAS  Google Scholar 

  • Huang N., Sutliff T. D., Litts J. C. and Rodriguez R. L. 1990 Classification and characterization of the rice alpha-amylase multigene family. Plant Mol. Biol. 14, 655–668.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q., Hou J., Hao C., Wang L., Ge H., Dong Y. et al. 2011 The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct. Integr. Genomics 11, 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y., Ohmiya K. and Hattori T. 1999 RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely foundin higher plants. Nucleic Acids Res. 27, 470–478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleczkowski L. A., Kunz S. and Wilczynska M. 2010 Mechanisms of UDP-glucose synthesis in plants. Crit. Rev. Plant Sci. 29, 191–203.

    Article  CAS  Google Scholar 

  • Kleines M., Elster R. C., Rodrigo M. J., Blervacq A. S., Salamini F. and Bartels D. 1999 Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.) Planta 209, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu A., Moriguchi T., Koyama K., Omura M. and Akihama T. 2002 Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J. Exp. Bot. 53, 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Lecharny A., Boudet N., Gy I., Aubourg S. and Kreis M. 2003 Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3, 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Lee B. H., Henderson D. A. and Zhu J. K. 2005 The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155–3175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Gourrierec J., Li Y. F. and Zhou D. X. 1999 Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J. 18, 663–668.

    Article  CAS  PubMed  Google Scholar 

  • Lessard P. A., Allen R. D., Bernier F., Crispino J. D., Fujiwara T. and Beachy R. N. 1991 Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes. Plant Mol. Biol. 16, 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Li F., Wu B., Qin X., Yan L., Hao C., Tan L. et al. 2014 Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene 546, 336–341.

    Article  CAS  PubMed  Google Scholar 

  • Luscher B and Eiseman R N. 1990 New light on Myc and Myb. Part II. Myb. Genes Dev. 4, 2235–2241.

    Article  CAS  PubMed  Google Scholar 

  • Marcotte W. R. J., Russell S. H. and Quatrano R. S. 1989 Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1, 969–976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin T., Frommer W. B., Salanoubat M. and Willmitzer L. 1993 Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 4, 367–377.

    Article  CAS  PubMed  Google Scholar 

  • Mena M., Cejudo F. J., Isabel-Lamoneda I. and Carbonero P. A. 2002 Role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol. 130, 111–119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morita A., Umemura T., Kuroyanagi M., Futsuhara Y., Perata P. and Yamaguchi J. 1998 Functional dissection of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos. FEBS Lett. 423, 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Motamayor J. C., Mockaitis K., Schmutz J., Haiminen N., Iii D. L., Cornejo O. et al. 2013 The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 14, 53.

    Article  Google Scholar 

  • Oh S. J., Song S. I., Kim Y. S., Jang H. J., Kim S. Y., Kim M. et al. 2005 Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341–351.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pence V. C. 1992 Abscisic acid and the maturation of cacao embryos in vitro. Plant Physiol. 98, 1391–1395.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piechulla B., Merforth N. and Rudolph B. 1998 Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol. Biol. 38, 655–662.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro T. T., Litholdo C. G. J., Sereno M. L., Leal G. A. J., Albuquerque P. S. and Figueira A. 2011 Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genet. Mol. Res. 10, 3291–3305.

    Article  CAS  PubMed  Google Scholar 

  • Rawsthorne S. 2002 Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 41, 182–196.

    Article  CAS  PubMed  Google Scholar 

  • Rogers H. J., Bate N., Combe J., Sullivan J., Sweetman J., Swan C. et al. 2001 Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol. Biol. 45, 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y., Llewellyn D. J., Liu Q., Xu S., Wu L., Wang L. et al. 2008 Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton. Funct. Plant Biol. 35, 382–393.

    Article  CAS  Google Scholar 

  • Ruan Y. L., Jin Y., Yang Y. J., Li G. J. and Boyer J. S. 2010 Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant 3, 942–955.

    Article  CAS  PubMed  Google Scholar 

  • Shirsat A., Wilford N., Croy R. and Boulter D. 1989 Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol. Gen. Genet. 215, 326–331.

    Article  CAS  PubMed  Google Scholar 

  • Skriver K. and Mundy J. 1990 Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503–512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solano R., Nieto C., Avila J., Canas L., Diaz I. and Paz-Ares J. 1995 Dual DNA binding specificity of a petal epidermis-specific MYBtranscription factor (MYB.Ph3) from Petunia hybrida. EMBO J. 14, 1773–1784.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stalberg K., Ellerstom M., Ezcurra I., Ablov S. and Rask L. 1996 Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napusseeds. Planta 199, 515–519.

    Article  CAS  PubMed  Google Scholar 

  • Sun C., Palmqvist S., Olsson H., Boren M., Ahlandsberg S. and Jansson C. 2003 A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15, 2076–2092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutoh K. and Yamauchi D. 2003 Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J. 34, 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi W. B. and Cashmore A. R. 1995 Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 445–474.

    Article  CAS  Google Scholar 

  • Tjaden G., Edwards J. W. and Coruzzi G. M. 1995 cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol. 108, 1109–1117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urao T., Yamaguchi-Shinozaki K., Urao S. and Shinozaki K. 1993 An Arabidopsismyb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529–1539.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villain P., Mache R. and Zhou D. X. 1996 The mechanism of GT element-mediated cell type-specific transcriptional control. J. Biol. Chem. 271, 32593–32598.

    Article  CAS  PubMed  Google Scholar 

  • Weber H., Borisjuk L., Heim U., Sauer N. and Wobus U. 1997 A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9, 895–908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber H., Borisjuk L. and Wobus U. 2005 Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 56, 253–279.

    Article  CAS  PubMed  Google Scholar 

  • Xiao X., Tang C., Fang Y., Yang M., Zhou B., Qi J. et al. 2014 Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J. 281, 291–305.

    Article  CAS  PubMed  Google Scholar 

  • Xu S. M., Brill E., Llewellyn D. J., Furbank R. T. and Ruan Y. L. 2012 Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol. Plant 5, 430–441.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D., Xu B., Yang X., Zhang Z. and Li B. 2011 The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet. Genomes 7, 443–456.

    Article  Google Scholar 

  • Zhang J., Arro J., Chen Y. and Ming R. 2013 Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics 14, 314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou D. X. 1999 Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 4, 210–214.

    Article  PubMed  Google Scholar 

  • Zou C., Lu C., Shang H., Jing X., Cheng H., Zhang Y. et al. 2013 Genome-wide analysis of the Sus gene family in cotton. J. Integr. Plant Biol. 55, 643–653.

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R., Salanoubat M., Willmitzer L. and Sonnewald U. 1995 Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.) Plant J. 7, 97–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (31301389) and the Tropical Crop Germplasm Resources Protection Project of the Ministry of Agriculture (2015NWB046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YINGHUI SONG.

Additional information

[Li F., Hao C., Yan L., Wu B., Qin X., Lai J. and Song Y. 2015 Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.). J. Genet. 94, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 535 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LI, F., HAO, C., YAN, L. et al. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.). J Genet 94, 461–472 (2015). https://doi.org/10.1007/s12041-015-0558-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0558-1

Keywords

Navigation