Skip to main content
Log in

Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.)

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Association mapping is a powerful high-resolution mapping tool for complex traits. The objective of this study was to identify QTLs for partial resistance to Phytophthora sojae. In this study, we evaluated a total of 214 soybean accessions by the hypocotyl inoculation method, and 175 were susceptible. The 175 susceptible accessions were then evaluated for P. sojae partial resistance using slant board assays. The 175 accessions were screened with 138 SSR markers that generated 730 SSR alleles. A subset of 495 SSR loci with minor allele frequency (MAF) ≥ 0.05 was used for association mapping by the Tassel general linear model (GLM) and mixed linear model (MLM) program. This soybean population could be divided into two subpopulations and no or weak relatedness was detected between pairwise accessions. Four SSR alleles, Satt634-133, Satt634-149, Sat_222-168 and Satt301-190, associated with partial resistance to P. sojae were detected by both GLM and MLM methods. Of these identified markers, one marker, Satt301, was located in regions where P. sojae resistance QTL have been previously mapped using linkage analysis. The identified markers will help to understand the genetic basis of partial resistance, and facilitate future marker-assistant selection aimed to improve resistance to P. sojae and reduce disease-related mortality in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • C., Flores-Vergara M. A., Krasnyanski S., Kumar S. and Thompson W. F. 2006 A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325.

  • Arahana V. S., Graef G. L., Specht J. E., Steadman J. R. and Eskridge K. M. 2001 Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci. 41, 180–188.

  • Bachlava E., Dewey R. E., Burton J. W. and Cardinal A. J. 2009 Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci. 49, 433–442.

  • Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

  • Burnham K. D., Dorrance A. E., VanToai T. T. and Martin S. K. S. 2003 Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci. 43, 1610–1617.

  • Demirbas A., Rector B. G., Lohnes D. G., Fioritto R. J., Graef G. L., Cregan P. B., et al. 2001 Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance. Crop Sci. 4, 1220–1227.

    Article  Google Scholar 

  • Diers B. W., Mansur L., Imsande J. and Shoemaker R. C. 1992 Mapping Phytophthora resistance loci in soybean with restriction-fragment-length-polymorphism markers. Crop Sci. 32, 377–383.

    Article  CAS  Google Scholar 

  • Dorrance A. E. and Schmitthenner A. F. 2000 New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 84, 1303–1308.

    Article  CAS  Google Scholar 

  • Dorrance A. E., McClure S. A. and Martin S. K. S. 2003 Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio. Plant Dis. 87, 308–312.

    Article  Google Scholar 

  • Du W. J., Yu D. Y. and Fu S. X. 2009 Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.] Agr. Sci. China 8, 529–537.

    Article  CAS  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Fu S. X., Zhan Y., Zhi H. J., Gai J. Y. and Yu D. Y. 2006 Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J. 2005 Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S. G., Martin S. K. S. and Dorrance A. E. 2006 Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci. 46, 168–173.

    Article  CAS  Google Scholar 

  • Gupta P. K., Rustgi S. and Kulwal P. L. 2005 Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol. Biol. 57, 461–485.

    Article  CAS  PubMed  Google Scholar 

  • Guzman P. S., Diers B. W., Neece D. J., Martin S. K. S., Leroy A. R., Grau C. R., et al. 2007 QTL associated with yield in three backcross-derived populations of soybean. Crop Sci. 47, 111–122.

    Article  CAS  Google Scholar 

  • Han Y. P., Teng W. L., Yu K. F., Poysa V., Anderson T., Qiu L. J., et al. 2008 Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162, 231–239.

    Article  CAS  Google Scholar 

  • Han Y. P., Li D. M., Zhu D., Li H. Y., Li X. P., et al. 2012 QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor. Appl. Genet. 125, 671–683.

    Article  CAS  PubMed  Google Scholar 

  • Hao D. R., Chao M. N., Yin Z. T. and Yu D. Y. 2012 Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186, 919–931.

    Article  CAS  Google Scholar 

  • Hardy O. J. and Vekemans X. 2002 SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620.

    Article  Google Scholar 

  • Holland J. B., Nyquist W. E. and Cervantes-Martínez C. T. 2002 Estimating and interpreting heritability for plant breeding: an update. Plant Breed. Rev. 22, 9–112.

    Google Scholar 

  • Hou J. F., Wang C. L., Hong X. J., Zhao J. M., Xue C. C., Guo N., et al. 2011 Association analysis of vegetable soybean quality traits with SSR markers. Plant Breed. 130, 444–449.

    Article  CAS  Google Scholar 

  • Jia H. Y. and Kurle J. E. 2008 Resistance and partial resistance to Phytophthora sojae in early maturity group soybean plant introductions. Euphytica 159, 27–34.

    Article  Google Scholar 

  • Jun T. H., Van K., Kim M. Y., Lee S. H. and Walker D. R. 2008 Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162, 179–191.

    Article  CAS  Google Scholar 

  • Kang Y. J., Kim K. H., Shim S., Yoon M. Y., Sun S., Kim M. Y., et al. 2012 Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 12, 139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kump K. L., Bradbury P. J., Wisser R. J., Buckler E. S., Belcher A. R., Oropeza-Rosas M. A., et al. 2011 Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43, 163–U120.

    Article  CAS  PubMed  Google Scholar 

  • Kyle D. E. and Nickell C. D. 1998 Genetic analysis of tolerance to Phytophthora sojae in the soybean culture Jack. Soybean Genet. Newslett. 25, 124–125.

    Google Scholar 

  • Li X. P., Han Y. P., Teng W. L., Zhang S. Z., Yu K. F., Poysa V., et al. 2010 Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ’Conrad’ and ’Hefeng 25’. Theor. Appl. Genet. 121, 651–658.

    Article  PubMed  Google Scholar 

  • Li Z. K., Arif M., Zhong D. B., Fu B. Y., Xu J. L., Domingo-Rey J., et al. 2006 Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc. Natl. Acad. Sci. USA 103, 7994–7999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    Article  CAS  PubMed  Google Scholar 

  • Loiselle B. A., Sork V. L., Nason J. and Graham C. 1995 Spatial genetic-structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425.

  • Lu Y. L., Zhang S. H., Shah T., Xie C. X., Hao Z. F., Li X. H., et al. 2010 Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc. Natl. Acad. Sci. USA 107, 19585–19590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackay I. and Powell W. 2007 Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Maroof M. A. S., Tucker D. M., Skoneczka J. A., Bowman B. C., Tripathy S. and Tolin S. A. 2010 Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene,Rsv4. Plant Genome-US 3, 14–22.

    Article  Google Scholar 

  • Morgante M. and Salamini F. 2003 From plant genomics to breeding practice. Curr. Opin. Biotech. 14, 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Neto A. L. D., Hashmi R., Schmidt M., Carlson S. R., Hartman G. L., Li S. X., et al. 2007 Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI 567374 and ’Ripley’. Mol. Breed 20, 53–62.

    Article  Google Scholar 

  • Poland J. A., Balint-Kurti P. J., Wisser R. J., Pratt R. C. and Nelson R. J. 2009 Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14, 21–29.

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafalski J. A. 2010 Association genetics in crop improvement. Curr. Opin. Plant Biol. 13, 174–180.

  • Schmitthenner A. F. 1985 Problems and progress in control of Phytophthora root-rot of soybean. Plant Dis. 69, 362–368.

    Article  Google Scholar 

  • Song Q. J., Marek L. F., Shoemaker R. C., Lark K. G., Concibido V. C., Delannay X., et al. 2004 A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Song X. E., Li Y. H., Chang R. Z., Guo P. Y. and Qiu L. J. 2010 Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L.) Merr.) in China. Sci. Agron. Sin. 43, 2209–2219 (in Chinese, with English abstract).

    Google Scholar 

  • St Clair D. A. 2010 Quantitative disease resistance and quantitative resistance loci in breeding. Annu. Rev. Phytopathol. 48, 247–268.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T., Kato M., Yoshida S., Matsumoto I., Kobayashi T., Kaga A., et al. 2012 Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed. Sci. 61, 511–522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tooley P. W. and Grau C. R. 1984 The relationship between rate-reducing resistance to Phytophthora megasperma f. sp. glycinea and yield of soybean. Phytopathology 74, 1209–1216.

    Article  Google Scholar 

  • Tucker D. M., Maroof M. A. S., Mideros S., Skoneczka J. A., Nabati D. A., Buss G. R., et al. 2010 Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci. 50, 628–635.

    Article  Google Scholar 

  • Wang H. H., Waller L., Tripathy S., Martin S. K. S., Zhou L., Krampis K., et al. 2010a Discovery of genes underlying soybean QTLs conferring partial resistance to Phytophthora sojae. Phytopathology 100, S190–S191.

    Google Scholar 

  • Wang H. H., Waller L., Tripathy S., St Martin S. K., Krampis K., Zhou L. C., et al. 2010b Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae. Plant Genome-US 3, 23–40.

    Article  CAS  Google Scholar 

  • Wang J., McClean P. E., Lee R., Goos R. J. and Helms T. 2008 Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor. Appl. Genet. 116, 777–787.

    Article  CAS  PubMed  Google Scholar 

  • Wang L. X., Guan R. X., Liu Z. X., Chang R. Z. and Qiu L. J. 2006 Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 46, 1032–1038.

    Article  Google Scholar 

  • Weng C. R., Yu K. F., Anderson T. R. and Poysa V. 2007 A quantitative trait locus influencing tolerance to Phytophthora root rot in the soybean cultivar ’Conrad’. Euphytica 158, 81–86.

    Article  Google Scholar 

  • Wu X. L., Zhao J. M., Sun S., Yang F., Wang Y. C., Gai J. Y. and Xing H. 2010 A survey of soybean germplasm for resistance to Phytophthora sojae. Euphytica 176, 261–268.

    Article  Google Scholar 

  • Wu X. L., Zhou B., Zhao J. M., Guo N., Zhang B., Yang F. et al. 2011 Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 130, 144–149.

  • Yu J. M. and Buckler E. S. 2006 Genetic association mapping and genome organization of maize. Curr. Opin. Biotech. 17, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Yu J. M., Pressoir G., Briggs W. H., Bi I. V., Yamasaki M., Doebley J. F., et al. 2006 A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Li-Juan Qiu (Chinese Academy of Agricultural Sciences) for providing the mini core collection of cultivated soybean in China and Prof. Yuan-Chao Wang (Nanjing Agricultural University) for providing the isolates of P. sojae race 2. This work was supported by the National Basic Research Programme of China was supported by the National Basic Research Programme of China Public Interest (CARS-004-PS10), Jiangsu Provincial Natural Science Foundation (BK2011637), China Transgenic Research Program (2011ZX08004-002) and the fundamental Research Funds for the Central Universities-the Science and Technology Innovation Fund for Young Scholars of Nanjing Agricultural University (KJ2012001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HAN XING.

Additional information

[Sun J., Guo N., Lei J., Li L., Hu G. and Xing H. 2014 Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). J. Genet. 93, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SUN, J., GUO, N., LEI, J. et al. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). J Genet 93, 355–363 (2014). https://doi.org/10.1007/s12041-014-0383-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0383-y

Keywords

Navigation