Skip to main content
Log in

PtNi nanoparticles embedded in porous silica microspheres as highly active catalysts for p-nitrophenol hydrogenation to p-aminophenol

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Supported Pt-based alloy nanoparticles have attracted greater attention in catalysis due to their high activity, reduced cost, and easy recycling in chemical reactions. In this work, mesoporous SiO2 microspheres were employed as support to immobilize PtNi alloy nanocatalysts with different mass ratios of Pt and Ni (1:0, 3:1, 1:1, 1:3 and 0:1) by a facile in situ one-step reduction in the absence of any capping agent. SEM, EDS, TEM, FTIR, XRD, ICP-AES, XPS and nitrogen adsorption/desorption analysis were employed to systematically investigate the morphology and structure of the obtained SiO2 microspheres and SiO2/PtNi nanocatalysts. Results show that uniform PtNi nanoparticles can be homogeneously and firmly embedded into the surface of SiO2 microspheres. When the as-prepared SiO2/PtNi nanocatalysts were used in the reduction process of p-nitrophenol to p-aminophenol, the nanocatalyst with Pt and Ni mass ratio of 1:3 showed the highest catalytic activity (TOF of 5.35 × 1018 molecules⋅g −1s −1) and could transform p-nitrophenol to p-aminophenol completely within 5 min. The SiO2/PtNi nanocatalyst can also maintain high catalytic activity in the fourth cycle, implying its excellent stability during catalysis.

PtNi was embedded into mesoporous SiO2 surface to avoid its aggregation and loss in catalysis. SiO2/PtNi(1:3) catalyst can be used/reused as efficient catalyst with high activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Du Y, Chen H, Chen R and Xu N 2004 Appl. Catal. A-Gen. 277 259

    Article  CAS  Google Scholar 

  2. Saha S, Pal A, Kundu S, Basu S and Pal T 2010 Langmuir 26 2885

    Article  CAS  Google Scholar 

  3. Mandlimath T R and Gopal B 2011 J. Mol. Catal. A-Chem. 350 9

    Article  CAS  Google Scholar 

  4. Wu K, Wei X, Zhou X, Wu D, Liu X, Ye Y and Wang Q 2011 J. Phys. Chem. C 115 16268

    Article  CAS  Google Scholar 

  5. Lu H, Yin H, Liu Y, Jiang T and Yu L 2008 Catal. Commun. 10 313

    Article  CAS  Google Scholar 

  6. Rode C V, Vaidya M J and Chaudhari R V 1999 Org. Process Res. Dev. 3 465

    Article  CAS  Google Scholar 

  7. Vaidya M J, Kulkarni S M and Chaudhari R V 2003 Org. Process Res. Dev. 7 202

    Article  CAS  Google Scholar 

  8. Zhang Z, Xiao F, Xi J, Sun T, Xiao S, Wang H, Wang S and Liu Y 2014 Sci. Rep. 4 4053

    Google Scholar 

  9. Song P, Feng J, Zhong S, Huang S, Chen J and Wang A 2015 RSC Adv. 5 35551

    Article  CAS  Google Scholar 

  10. Toshima N and Wang Y 1994 Langmuir 10 4574

    Article  CAS  Google Scholar 

  11. Lu Z, Yin H, Wang A, Hu J, Xue W, Yin H and Liu S 2015 J. Ind. Eng. Chem. 22 258

    Article  Google Scholar 

  12. Hostetler M J, Wingate J E, Zhong C J, Harris J E, Vachet R W, Clark M R, Londono J D, Green S J, Stokes J J, Wignall G D, Glish G L, Porter M D, Evans N D and Murray R W 1998 Langmuir 14 17

    Article  CAS  Google Scholar 

  13. Ananthan S A, Suresh R, Giribabu K and Narayanan V 2013 J. Chem. Sci. 125 1365

    Article  CAS  Google Scholar 

  14. Kim J G, Im J K, Ryoo K K, Jeon J Y, Yoo S J and Kim S S 2015 J. Ind. Eng. Chem. 22 258

    Article  CAS  Google Scholar 

  15. Jeena S E and Selvaraju T 2016 J. Chem. Sci. 128 357

    Article  CAS  Google Scholar 

  16. Shukla A K, Raman R K, Choudhury N A, Priolkar K R, Sarode P R, Emura S and Kumashiro R 2004 J. Electroanal. Chem. 563 181

    Article  CAS  Google Scholar 

  17. Ghosh S and Raj C R 2015 J. Chem. Sci. 127 949

    Article  CAS  Google Scholar 

  18. Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N and Markovic N M 2007 Nature Mater. 6 241

    Article  CAS  Google Scholar 

  19. Ghosh S 2004 Appl. Catal. A-Gen. 268 61

    Article  CAS  Google Scholar 

  20. Dogan Ü, Kaya M, Cihaner A and Volkan M 2012 Electrochim. Acta 85 220

    Article  CAS  Google Scholar 

  21. Luo B, Xu S, Yan X and Xue Q 2012 Electrochem. Commu. 23 72

    Article  CAS  Google Scholar 

  22. Wang M, Shen T, Wang M, Zhang D and Chen J 2013 Mater. Lett. 107 311

    Article  CAS  Google Scholar 

  23. Seo M, Kim S, Lee D W, Jeong H E and Lee K Y 2016 Appl. Catal. A Gen. 511 87

    Article  CAS  Google Scholar 

  24. Shet A and Vidya S K 2016 Sol. Energy 127 67

    Article  CAS  Google Scholar 

  25. Zhang H, Liu J, Tian Z, Ye Y, Cai Y, Liang C and Terabe K 2016 Carbon 100 590

    Article  CAS  Google Scholar 

  26. Leofanti G, Padovan M, Tozzola G and Venturelli B 1998 Catal. Today 41 207

    Article  CAS  Google Scholar 

  27. Sahoo P K, Panigrahy B and Bahadur D 2014 RSC Adv. 4 48563

    Article  CAS  Google Scholar 

  28. Zhu E, Li Y, Chiu C, Huang X, Li M, Zhao Z, Liu Y, Duan X and Huang Y 2016 Nano Res. 9 149

    Article  CAS  Google Scholar 

  29. Considine D M 1983 In Van Nostrand’s Scientific Encyclopedia (New York: John Wiley)

  30. Williams D H and Fleming I 1987 In Spectroscopic methods in organic chemistry (New York: McGraw-Hill)

  31. Si Y and Samulski E T 2008 Chem. Mater. 20 6792

    Article  CAS  Google Scholar 

  32. Yang H, Vogel W, Lamy C and Alonsovante N 2004 J. Phys. Chem. 108 11024

    Article  CAS  Google Scholar 

  33. Souza L K C D, Zamian J R, Filho G N D R, Soledade L E B, Santos I M G D, Souza A G, Scheller T, Angélica R S and Costa C E F D 2009 Dyes Pigm. 81 187

    Article  Google Scholar 

  34. Wang D, Peng Q and Li Y 2010 Nano. Res. 3 574

    Article  CAS  Google Scholar 

  35. Lan M, Fan G, Wang Y, Yang L and Li F 2014 J. Mater. Chem. A 2 14682

    Article  CAS  Google Scholar 

  36. Luo B, Xu S, Yan X and Xue Q 2013 J. Electrochem. Soc. 160 F262

    Article  CAS  Google Scholar 

  37. Deng Y, Tian N, Zhou Z, Huang R, Liu Z, Xiao J and Sun S 2012 Chem. Sci. 3 1157

    Article  CAS  Google Scholar 

  38. Yamauchi Y, Tonegawa A, Komatsu M, Wang H, Wang L, Nemoto Y, Suzuki N and Kuroda K 2012 J. Am. Chem. Soc. 134 5100

    Article  CAS  Google Scholar 

  39. Haber J A, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell A T and Gregoire J M 2014 Energ. Environ. Sci. 7 682

    Article  CAS  Google Scholar 

  40. Haniff M A S M, Lee H W, Bien D C S and Azid I A 2014 J. Nanopart. Res. 16 1

    Article  CAS  Google Scholar 

  41. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H and Watanabe M 2006 J. Phys. Chem. B 110 23489

    Article  CAS  Google Scholar 

  42. Praharaj S, Nath S, Ghosh S K, Kundu S and Pal T 2004 Langmuir 20 9889

    Article  CAS  Google Scholar 

  43. Zeng J, Zhang Q, Chen J and Xia Y 2010 Nano. Lett. 10 30

    Article  CAS  Google Scholar 

  44. Rashid M H, Bhattacharjee R R, Kotal A and Mandal T K 2006 Langmuir 22 7141

    Article  CAS  Google Scholar 

  45. Lee J, Park J C, Bang J U and Song H 2008 Chem. Mater. 20 5839

    Article  CAS  Google Scholar 

  46. Lee J, Park J C and Song H 2008 Adv. Mater. 20 1523

    Article  CAS  Google Scholar 

  47. Saha S, Pal A, Kundu S, Basu S and Pal T 2010 Langmuir 26 2885

    Article  CAS  Google Scholar 

  48. Saha S, Pal A, Pande S, Sarkar S, Panigrahi S and Pal T 2009 J. Phys. Chem. C 113 7553

    Article  CAS  Google Scholar 

  49. Raula M, Rashid M H, Lai S, Roy M and Mandal T K 2012 ACS Appl. Mater. Interfaces 4 878

    Article  CAS  Google Scholar 

  50. Yang J, Shen X, Ji Z, Zhou H, Zhu G and Chen K 2014 Appl. Surf. Sci. 316 575

    Article  CAS  Google Scholar 

  51. Fu G, Ding L, Chen Y, Lin J, Tang Y and Lu T 2014 CrystEngComm 16 1606

    Article  CAS  Google Scholar 

  52. Jana D, Dandapat A and De G 2010 Langmuir 26 12177

    Article  CAS  Google Scholar 

  53. Lin F and Doong R 2011 J. Phys. Chem. C 115 6591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21576247 and 21271158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BING ZHANG.

Additional information

Supplementary Information (SI)

Additional information pertaining to the time-dependent UV-Vis adsorption spectra changes of p-nitrophenol catalyzed by physically mixed SiO2/Pt and SiO2/Ni are given in Figure S1 S1, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 152 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUAN, H., CHAO, C., LU, Y. et al. PtNi nanoparticles embedded in porous silica microspheres as highly active catalysts for p-nitrophenol hydrogenation to p-aminophenol. J Chem Sci 128, 1355–1365 (2016). https://doi.org/10.1007/s12039-016-1139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1139-4

Keywords

Navigation