Skip to main content
Log in

Reactivity of [Cp*Mo(CO)3Me] with chalcogenated borohydrides Li[BH2E3] and Li[BH3EFc] (Cp*= (η 5-C5Me5); E = S, Se or Te; Fc = (C5H5-Fe-C5H4))

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Reactivity of [Cp*Mo(CO) 3Me], 1 with various chalcogenide ligands such as Li[BH 2 E 3] and Li[BH 3EFc] (E = S, Se or Te; Fc = (C 5 H 5-Fe-C 5 H 4)) has been described. Room temperature reaction of 1 with Li[BH 2 E 3] (E = S and Se) yielded metal chalcogenide complexes [Cp*Mo(CO) 2(η 2-S 2 CCH 3)], 2 and [Cp*Mo(CO) 2(η 1-SeC 2 H 5)], 3. In compound 2, {Cp*Mo(CO) 2} fragment adopts a four-legged piano-stool geometry with a η 2-dithioacetate moiety. In contrast, treatment of 1 with Li[BH 3(EFc)] (E = S, Se or Te; Fc = C 5 H 5-Fe-C 5 H 4) yielded borate complexes [Cp*Mo(CO) 2(μ-H)(μ-EFc)BH 2], 4-6 in moderate yields. Compounds 4-6 are too unstable and gradual conversion to [{Cp*Mo(CO) 2} 2(μ-H)(μ-EFc] (7: E = S; 8: Se) and [{Cp*Mo(CO) 2} 2(μ-TeFc) 2], 9 happened by subsequent release of BH 3. All the compounds have been characterized by mass spectrometry, IR, multinuclear NMR spectroscopy and structures were unequivocally established by crystallographic analysis for compounds 2, 3 and 7.

Reactivity of [Cp*Mo(CO)3Me] with various chalcogenide ligands such as, Li[BH2E3] and Li[BH3EFc] (E = S, Se or Te; Fc = (C5H5-Fe-C5H4)), generated novel molybdenum thiolate and agostic borate complexes respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Figure 1
Figure 2
Scheme 2
Scheme 3
Figure 3

Similar content being viewed by others

References

  1. (a) McEvoy A J and Grätzel M 2008 Photovoltaic Cells for Sustainable Energy InSustainable Energy Technologies K Hanjalic and L A Van De Krol (Eds.) (The Netherlands: Springer) Ch. 5; (b) Goetzberger A, Hebling C and Schock H W 2003 Mater. Sci. Eng. 40 1

  2. Tudron F B, Akridge J R and Puglisi V J 2004 Proc. Power Sources Conf. 41 341

    Google Scholar 

  3. (a) E I Stiefel (Ed.) 2004 Dithiolene Chemistry: Synthesis, Properties and Applications In Progress in Inorganic Chemistry (New York: Wiley-Interscience) Vol. 52; (b) J A McCleverty and T J Meyer (Ed.) 2004 In Comprehensive Coordination Chemistry II (Technological Application of Coordination Chemistry) (The Netherlands: Pergamon Press-Elsevier) Vol. 9

  4. S Kato (Ed.) 2005 Chalcogenocarboxylic Acid Derivatives In Topics in Current Chemistry (The Netherlands: Springer) Vol. 251

  5. (a) Vittal J J and Ng M T 2006 Acc. Chem. Res. 39 869; (b) Santana M D, Sáez-Ayala M, García L, Pérez J and García G 2007 Eur. J. Inorg. Chem. 4628; (c) Kinoshita S, Wakita H and Yamashita M 1989 J. Chem. Soc., Dalton Trans. 2457; (d) Macalindong J S, Fronczek F R, Schuerman J A, Selbin J and Watkins S F 2006 Acta Cryst. E62 m889; (e) Furlani C, Flamini A, Sgamellotti A, Bellitto C and Piovesana O 1973 J. Chem. Soc., Dalton Trans. 2404; (f) Mehrotra R C, Srivastava G and Vasanta E N 1980 Inorg. Chim. Acta 47 125

  6. (a) Whitlow S H 1975 Acta Cryst. B31 2531; (b) Attanasio D, Bellitto C and Flamini A 1980 Inorg. Chem. 19 3419; (c) Duraj S A, Andras M T and Rihter B 1989 Polyhedron 8 2763; (d) Andras M T and Duraj S A 1993 Inorg. Chem. 32 2874; (e) Chaudhari K R, Wadawale A P, Ghoshal S, Chopade S M, Sagoria V S and Jain V K 2009 Inorg. Chim. Acta 362 1819

  7. (a) Bianchini C and Meli A 1983 J. Chem. Soc., Dalton Trans. 2419; (b) Giolando D M and Rauchfuss T B 1984 Organometallics 3 487; (c) Bianchini C, Meli A, Dapporto P, Tofanari A and Zanello P 1987 Inorg. Chem. 26 3677; (d) Maratini F, Pandolfo L, Bendova M, Schubert U, Bauer M, Rocchia M, Venzo A, Tondello E and Gross S 2011 Inorg. Chem. 50 489

  8. (a) Kreissl F R and Ullrich N 1989 J. Organomet. Chem. 361 C30; (b) Kreissl F R, Ullrich N, Wirsing A and Thewalt U 1991 Organometallics 10 3275

  9. Klein D P, Kloster G M and Bergman R G 1990 J. Am. Chem. Soc. 112 2022

    Article  CAS  Google Scholar 

  10. (a) Köpf H and Schmidt M 1965 J. Organomet. Chem. 4 426; (b) Giddings S A 1967 Inorg. Chem. 6 849; (c) Sato M and Yoshida T 1972 J. Organomet. Chem. 39 389; (d) Davidson J L, Shiralian M, Manojlović-Muir L and Muir K W 1984 J. Chem. Soc., Dalton Trans. 2167; (e) Kim Y J, Osakada K, Sugita K, Yamamoto T and Yamamoto A 1988 Organometallics 7 2182; (f) Amarasekera J and Rauchfuss T B 1989 Inorg. Chem. 28 3875; (g) Dev S, Imagawa K, Mizobe Y, Cheng G, Wakatsuki Y, Yamazaki H and Hidai M 1989 Organometallics 8 1232

  11. (a) Kolis J W 1990 Coord. Chem. Rev. 105 195; (b) Roof L C and Kolis J W 1993 Chem. Rev. 93 1037; (c) Krautscheid H, Frenske D, Baum G and Semmelmann M 1993 Angew. Chem. Int. Ed. 106 1303; (d) Totubaev Y, Mathur P and Pasynskii A 2011 J. Organomet. Chem. 696 832; (e) Mathur P, Mukhopadhyay S, Lahiri G K, Chakraborty S and Thöne C 2002 Organometallics 21 5209; (f) De-Groot M W, Cockburn M W, Workentin M S and Corrigan J F 2001 Inorg. Chem. 40 4678; (g) Wachter J 2014 Eur. J. Inorg. Chem. 1367

  12. Green M L H, Hubert J D and Mountford P 1990 J. Chem. Soc., Dalton Trans. 3793

  13. Lalancette J M, Frêche A and Monteux R 1968 Can. J. Chem. 46 2754

    Article  CAS  Google Scholar 

  14. Lalancette J M and Arnac M 1969 Can. J. Chem. 47 3695

    Article  CAS  Google Scholar 

  15. Herberhold M and Leitner P 1987 J. Organomet. Chem. 336 153

    Article  CAS  Google Scholar 

  16. Ryschkewitsch G E and Nainan K C 1974 Inorg. Synth. 15 113

    CAS  Google Scholar 

  17. Ramalakshmi R, Saha K, Roy D K, Varghese B, Phukan A K and Ghosh S 2015 Chem. Eur. J. 21 17191

    Article  CAS  Google Scholar 

  18. (a) Sheldrick G M 1997 SHELXS-97, University of Göttingen, Germany; (b) Sheldrick G M 1997 SHELXL-97, University of Göttingen, Germany; (c) Altomare A, Cascarano G, Giacovazzo C and Guagliardi A 1993 J. Appl. Cryst. 26 343

  19. Tantalum: (a) Bose S K, Geetharani K and Ghosh S 2011 Chem. Commun. 47 11996; (b) Bose S K, Geetharani K, Varghese B and Ghosh S 2010 Inorg. Chem. 4 6375

  20. Molybdenum: (a) Dhayal, R S, Sahoo S, Reddy K H K, Mobin S M, Jemmis E D and Ghosh S 2010 Inorg. Chem. 49 900; (b) Thakur A, Chakrahari K K V, Mondal B and Ghosh S 2013 Inorg. Chem. 52 2262; (c) Geetharani K, Bose S K, Pramanik G, Saha T K, Ramkumar V and Ghosh S 2009 Eur. J. Inorg. Chem. 1483

  21. Tungsten: Sahoo S, Reddy K H K, Dhayal R S, Mobin S M, Ramkumar V, Jemmis E D and Ghosh S 2009 Inorg. Chem. 48 6509

  22. Rhenium: (a) Ghosh S, Lei X, Cahill C L and Fehlner T P 2000 Angew. Chem. Int. Ed. 39 2900; (b) Ghosh S, Beatty A M and Fehlner T P 2002 Collect. Czech. Chem. Commun. 67 808; (c) Ghosh S, Rheingold A L and Fehlner T P 2001 Chem. Commun. 895; (d) Ghosh S, Shang M and Fehlner T P 1999 J. Am. Chem. Soc. 121 7451; (e) Ghosh S, Lei X, Shang M and Fehlner T P 2000 Inorg. Chem. 39 5373

  23. Ruthenium: (a) Bose S K, Roy D K, Shankhari P, Yuvaraj K, Mondal B, Amrita Sikder and Ghosh S 2013 Chem. Eur. J. 19 2337; (b) Anju R S, Roy D K, Geetharani K, Mondal B, Varghese B and Ghosh S 2013 Dalton Trans. 42 12828; (c) Geetharani K, Tussupbayev S, Borowka J, Holthausen M C and Ghosh S 2012 Chem. Eur. J. 18 8482; (d) Ghosh S, Fehlner T P and Noll B C 2005 Chem. Commun. 3080; (e) Ghosh S, Noll B C and Fehlner T P 2005 Angew. Chem. Int. Ed. 44 6568; (f) Anju R S, Saha K, Mondal B, Dorcet V, Roisnel T, Halet J-F and Ghosh S 2014 Inorg. Chem. 53 10527

  24. Rhodium: (a) Roy D K, Bose S K, Anju R S, Ramkumar V and Ghosh S 2012 Inorg. Chem. 51 10715; (b) Roy D K, Bose S K, Anju R S, Mondal B, Ramkumar V and Ghosh S 2013 Angew. Chem. Int. Ed. 52 3222; (c) Anju R S, Roy D K, Mondal B, Yuvaraj K, Arivazhagan C, Saha K, Varghese B and Ghosh S 2014 Angew. Chem. Int. Ed. 53 2873

  25. (a) Bose S K, Geetharani K, Ramkumar V, Varghese B and Ghosh S 2010 Inorg. Chem. 49 2881; (b) Roy D K, Bose S K, Geetharani K, Chakrahari K K V, Mobin S M and Ghosh S 2012 Chem. Eur. J. 18 9983; (c) Sahoo S, Mobin S M and Ghosh S 2010 J. Organomet. Chem. 695 945; (d) Krishnamoorthy B S, Thakur A, Chakrahari K K V, Bose S K, Hamon P, Roisnel T, Kahlal S, Ghosh S and Halet J-F 2012 Inorg. Chem. 51 10375; (e) Thakur A, Sao S, Ramkumar V and Ghosh S 2012 Inorg. Chem. 51 8322; (f) Geetharani K, Bose S K, Sahoo S, Varghese B, Mobin S M and Ghosh S 2011 Inorg. Chem. 50 5824; (g) Dhayal R S, Chakrahari K K V, Varghese B, Mobin S M and Ghosh S 2010 Inorg. Chem. 49 7741; (h) Bose S K, Geetharani K, Sahoo S, Reddy K H K, Varghese B, Jemmis E D and Ghosh S 2011 Inorg. Chem. 50 9414; (i) Geetharani K, Bose S K, Sahoo S and Ghosh S 2011 Angew. Chem. Int. Ed. 50 3908; (j) Geetharani K, Bose S K, Basak D, Suresh M V and Ghosh S 2011 Inorg. Chim. Acta 372 42; (k) Chakrahari K K V, Ramalakshmi R, Sharmila D and Ghosh S 2014 J. Chem. Sci. 126 1597

  26. Gill D S, Green M, Marsden K, Moore I, Orpen A G, Stone F A G, Williams I D and Woodward P 1984 J. Chem. Soc., Dalton Trans. 1343

  27. Darensbourg D J, Wiegreffe H P and Reibenspies J H 1991 Organometallics 10 6

    Article  CAS  Google Scholar 

  28. Duraj S A, Andras M T and Kibala P A 1990 Inorg. Chem. 29 1232

    Article  CAS  Google Scholar 

  29. Thöne C, Jones P G and Laube J 1997 Acta Cryst. C53 1539

    Google Scholar 

  30. Jones P G, Laube J and Thöne C 1997 Inorg. Chem. 36 2097

    Article  CAS  Google Scholar 

  31. Adel J, Weller F and Dehnicke K 1988 J. Organomet. Chem. 347 343

    Article  CAS  Google Scholar 

  32. (a) Richards R L 1997 New J. Chem. 21 727; (b) Venkataramanan N S, Kuppuraj G and Rajagopal S 2005 Coord. Chem. Rev. 249 1249; (c) Groysman S and Holm R H 2009 Biochemistry 48 2310; (d) Henkel G and Krebs B 2004 Chem. Rev. 104 801; (e) Bertini I, Gray H B, Stiefel E I and Valentine J S 2007 In Biological Inorganic Chemistry: Structure and Reactivity (Sausalito, CA: University Science Books); (f) King R B and Bitterwolf T E 2000 Coord. Chem. Rev. 206-207 563

  33. Alper H, Einstein F W B, Nagai R, Petrignani J F and Willis A C 1983 Organometallics 2 1291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous support of the Department of Science and Technology, DST (Project No. SR/SI/IC-13/2011), New Delhi is gratefully acknowledged. R. R. is grateful to University Grants Commission (UGC) and K. S. is thankful to Council of Scientific and Industrial Research (CSIR), India for Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUNDARGOPAL GHOSH.

Additional information

Supplementary Information (SI)

Supplementary data contains the X-ray crystallographic files in CIF format for 2, 3, 7 and CCDC 1431592 (2), 1431593 (3), 1431591 (7) for this work. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_-request/cif. All additional information pertaining to characterization of the complexes 2-9 using ESI-MS technique, IR spectra and multinuclear NMR spectra and 1H coupled 11B spectra of Li[H 3B(EFc)] (E = S, Se, Te), (figures S1S40) are given in the Supplementary Information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.89 MB)

(PDF 149 KB)

(PDF 251 KB)

(PDF 171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAMALAKSHMI, R., SAHA, K., PAUL, A. et al. Reactivity of [Cp*Mo(CO)3Me] with chalcogenated borohydrides Li[BH2E3] and Li[BH3EFc] (Cp*= (η 5-C5Me5); E = S, Se or Te; Fc = (C5H5-Fe-C5H4)). J Chem Sci 128, 1025–1032 (2016). https://doi.org/10.1007/s12039-016-1102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1102-4

Keywords

Navigation