Skip to main content
Log in

Syntheses and structures of chalcogen-bridged binuclear group 5 and 6 metal complexes

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 22 January 2020

This article has been updated

Abstract

Syntheses and structural elucidations of a series of chalcogen stabilized binuclear complexes of group 5 and 6 transition metals have been described. Room temperature reaction of [Cp*CrCl]2 (Cp* = η5-C5Me5) with Li[BH3(SePh)] afforded a Se inserted binuclear chromium complex, [(Cp*Cr)2(µ-Se2SePh)2], 1. In an attempt to make the analogous complexes with heavier group 6 metals, reactions of [Cp*MCl4] (M = Mo and W) with Li[BH3(SePh)] were carried out that yielded Se inserted binuclear complexes [(Cp*M)2(µ-Se)2(µ-SePh)2], 2 and 3 (2: M = Mo and 3: M = W) along with known [(Cp*M)2B5H9], 4ab (4a: M = Mo and 4b: M = W). Similarly, the reactions of [Cp*NbCl4] with Li[BH3(EPh)] (E = S or Se) followed by thermolysis led to the formation of binuclear chalcogen complexes [(Cp*Nb)2(µ-E2)2], 5 and 6 (5: E = S and 6: E = Se) and known [(Cp*Nb)2(B2H6)2], 7. All these complexes have been characterized by 1H and 13C NMR spectroscopy and mass spectrometry. The structural integrity of complexes 1, 3, 5 and 6 was established by the X-ray diffraction studies. The DFT studies further exemplify the bonding interactions present in these complexes, especially the multiple bond character between the metals in 1–3.

Graphic abstract

The syntheses and structural characterizations of three chalcogen-bridged bimetallic complexes of group 5 and 6 metals, such as [(Cp*Nb)2(µ-E2)2] (E = S and Se) (right), [(Cp*Cr)2(µ-Se2SePh)2] (centre) and [(Cp*M)2(µ-Se)2(µ-SePh)2], (M = Mo and W) (left) are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Scheme 2
Figure 2
Scheme 3
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 22 January 2020

    Scheme��1 was published incorrectly in the original version. The correct Scheme��1 is provided below.

References

  1. (a) Riaz U, Curnow O J and Curtis M D 1994 Desulfurization of Organic Sulfur Compounds Mediated by a Molybdenum /Cobalt/Sulfur Cluster J. Am. Chem. Soc. 116 4357; (b) Hales B J, Case E E, Morningstar J E, Dzeda M F and Mauterer L A 1986 Isolation of a New Vanadium-Containing Nitrogenase from Azotobacter vinelandii Biochemistry 25 7251

  2. (a) Herbst K, Monari M and Brorson M 2002 Molecular Metal Sulfide Cluster Model for Substrate Binding to Oil-Refinery Hydrodesulfurization Catalysts Inorg. Chem. 41 1336; (b) Burgess B K and Lowe D 1996 Mechanism of Molybdenum Nitrogenase J. Chem. Rev. 96 2983; (c) Wakabayashi T, Ishii Y, Murata T, Mizobe Y and Hidai M 1995 Stereoselective Addition of Carboxylic Acids to Electron Deficient Acetylenes Catalyzed by the PdMo3S4 Cubane-Type Cluster Tetrahedron Lett. 36 5585

  3. (a) E W Abel, F G A Stone and G E Wilkinson (Eds.) 1995 Comprehensive Organometallic Chemistry II (New York: Pergamon); (b) D M P Mingos and R H Crabtree (Eds.) 2007 Comprehensive Organometallic Chemistry III (New York: Pergamon)

  4. (a) Perla L G and Sevov S C 2015 [Bi12Ni7(CO)4]4−: Aggregation of Intermetalloid Clusters by Their Thermal Deligation and Oxidation Inorg. Chem. 54 8401; (b) Perla L G and Sevov S C 2016 Cluster Fusion: Face-Fused Nine-Atom Deltahedral Clusters in [Sn14Ni(CO)]4- Angew. Chem. Int. Ed. 55 6721; (c) Goicoechea J M and Sevov S C 2006 Deltahedral Germanium Clusters: Insertion of Transition-Metal Atoms and Addition of Organometallic Fragments J. Am. Chem. Soc. 128 4155; (d) Sahoo S, Dhayal R S, Varghese B and Ghosh S 2009 Unusual Open Eight-Vertex Oxamolybdaboranes: Structural Characterizations of (η5-C5Me5Mo)2B5(μ-OEt)H6R (R = H and n-BuO) Organometallics 28 1586

  5. (a) Stevenson D L and Dahl L F 1967 Organometallic Sulfur Complexes. VIII. The Molecular Structure of a Doubly Sulfur-Bridged Dimeric Complex of Molybdenum(V), [C5H5MoO]2S2, Containing a Molybdenum-Molybdenum Interaction J. Am. Chem. Soc. 89 3721; (b) Tatsumi K, Inoue Y, Kawaguchi H, Kohsaka M, Nakamura A, Cramer R E, VanDoorne W, Taogoshi G J and Richmann P N 1993 Structural Diversity of Sulfide Complexes Containing Half-Sandwich Cp*Ta and Cp*Nb Fragments Organometallics 12 352

  6. (a) Weberg R, Haltiwanger R C and Rakowski D M 1985 Structure and Reactivity of [CpFeS2]2 Organometallics 4 1315; (b) Adams R D, Horvath I T and Mathur P 1984 Cluster Synthesis. 6. The Unusual Structures, Bonding, and Reactivity of Some Sulfido-Bridged Tungsten-Osmium Carbonyl Cluster Compounds J. Am. Chem. Soc. 106 6296

  7. Simonnet-Jégat C and Sécheresse F 2001 Binary Vanadium Chalcogenide Complexes Chem. Rev. 101 2601

    Article  Google Scholar 

  8. (a) Bolinger C M and Rauchfuss T B 1982 Structure of (C5H4CH3)2V2S5 and Its Acetylene Addition Reaction Organometallics 1 1551; (b) Bolinger C M, Rauchfuss T B and Rheingold A L 1983 Synthesis and Structures of (i-PrC5H4)2V2S4 and (C5H5)2V2S2(S2C2(CF3)2): The Influence of π-Bonding on the Geometry of the µ-S2 Ligand J. Am. Chem. Soc. 105 6321

  9. (a) Adams R D and Wang S 1985 Two-Site Reactivity in a Ligand-Bridged Cluster. The Reaction of Os4(CO)123-S) with Terminal Acetylenes Organometallics 4 1902; (b) Linck R C, Pafford R J and Rauchfuss T B 2001 Heterolytic and Homolytic Activation of Dihydrogen at an Unusual Iridium (II) Sulfide J. Am. Chem. Soc. 123 8856

  10. Ohki Y, Matsuura N, Marumoto T, Kawaguchi H and Tatsumi K 2003 Heterolytic Cleavage of Dihydrogen Promoted by Sulfido-Bridged Tungsten-Ruthenium Dinuclear Complexes J. Am. Chem. Soc. 125 7978

    Article  CAS  Google Scholar 

  11. Adams R D and Kwon O-S 2003 Syntheses and Reactivity of the Diselenido Molybdenum–Manganese Complex CpMoMn(CO)5(µ-Se2) Inorg. Chem. 42 6175

    Article  CAS  Google Scholar 

  12. Adams R D, Captain B, Kwon O-S and Miao S 2003 New Disulfido Molybdenum–Manganese Complexes Exhibit Facile Addition of Small Molecules to the Sulfur Atoms Inorg. Chem. 42 3356

    Article  CAS  Google Scholar 

  13. Dubois R M, Jagirdar B, Noll B and Dietz S 1996 In: Syntheses, Structures, and Reactions of Cyclopentadienyl Metal Complexes with Bridging Sulfur Ligands E I Stiefel and K Mazumoto (Eds.) ACS Symposium. Series: 653; Washington DC p. 269

  14. (a) Appel A M, DuBois D L and DuBois M R 2005 Molybdenum-Sulfur Dimers as Electrocatalysts for the Production of Hydrogen at Low Overpotentials J. Am. Chem. Soc. 127 12717; (b) Appel A M, Lee S -J, Franz J A, DuBois D L and DuBois M R 2009 Free Energy Landscapes for S–H Bonds in Cp*2Mo2S4 Complexes J. Am. Chem. Soc. 131 5224

  15. DuBois M R, VanDerveer M C, DuBois D L, Haltiwanger R C and Miller W K 1980 Characterization of Reactions of Hydrogen with Coordinated Sulfido Ligands J. Am. Chem. Soc. 102 7456

    Article  CAS  Google Scholar 

  16. Denisov N T, Shuvalova N I, Shilov A E, Pasynskij A A, Kolobkov B I and Eremenko I L 1993 Reduction of molecular nitrogen in a protic medium with participation of Fe-S and Mo-Fe-S clusters Kinet. Katal. 34 858

    CAS  Google Scholar 

  17. Rakitin Yu V and Kalinnikov V T 1994 Sovremennaya magnetokhimiya [Modern magnetochemistry] (Nauka: St-Peterburg) p. 276 p (in Russian)

  18. (a) Keim W and Zhu Y 1990 Catalytic Desulfurization Reactions Using Triple Bond Dimolybdenum and Ditungsten Organometallic Complexes J. Mol. Catal. 58 355; (b) Brunner H, Wachter J and Wintergerst H 1982 Reaktivität der m—m-mehrfachbindung in metallcarbonyl-derivaten: V. Die reaktion von (η5-C5Me5)2M2(CO)4 (M = Mo, W) MIT elementarem selen J. Organomet. Chem. 235 77; (c) Hong M, Cao R, Kawaguchi H and Tatsumi K 2002 Synthesis and Reactions of Group 6 Metal Half-Sandwich Complexes of 2,2-Dicyanoethylene-1,1-dichalcogenolates [(Cp*)M{E2CdC(CN)2}2]- (M = Mo, W; E = S, Se) Inorg. Chem. 41 4824; (d) Volkov S V, Kolesnichenko V L and Timoshchenko N. I 1988 A New Family of Binuclear Molybdenum(V) and Tungsten(V) Chalcohalides J. Coord. Chem. 17 367; (e) Krishnamoorthy B S, Thakur A, Chakrahari K K V, Bose S K, Hamon P, Roisnel T, Kahlal S, Ghosh S and Halet J-F 2012 Theoretical and Experimental Investigations on Hypoelectronic Heterodimetallaboranes of Group 6 Transition Metals Inorg. Chem. 51 10375; (f) Shi Y -C 2004 Reactions of Mo–Mo singly-bonded complexes [(η5-RC5H4)2Mo2(CO)6] with diphenylditelluride in the presence of nBu4NI Crystal structures of complexes [(η5-C5H5)Mo(CO)3Te] and cis/ae-[(η5-C2H5O2CC5H4)2Mo2(l-Te)2(l-TePh)2] Polyhedron 23 1663; (g) Song L -C, Shi Y -C and Zhu W -F 1999 Synthesis and characterization of doubly bonded and quadruply bridged trans/anti and trans/syn-(η5-RC5H4)2M2(μ-Se)2(μ-SePh)2 (M = Mo, W) isomers Polyhedron 18 2163; (h) Shi Y -C and Song L -C 2004 Syntheses and crystal structures of quadruply bridged Mo2Se4 complexes containing functionalized cyclopentadienyl ligands: trans/anti–(η5-CH3O2CC5H4)2Mo2(µ-Se)2(µ-SeCH2Ph)(µ-SePh) and trans/syn-(η5-C2H5O2CC5H4)2Mo2(µ-Se)2(µ-SePh)2 J. Coord. Chem. 57 731

  19. (a) Sokolov M N, Molina R H, Elsegood M R J, Heath S L, Clegg W and Sykes A G 1997 Preparation, structure and reactivity of the di-μ-disulfido Nb IV2 aqua ion [Nb2(μ-S2)2(H2O)8]4+, the structure of [Nb2(μ-S2)2(NCS)8]4-, and properties of the related (μ-S)2 aqua ion J. Chem. Soc., Dalton Trans. 2059; (b) Bolinger C M, Rauchfuss T B and Wilson S R 1982 Synthesis of Organovanadium Sulfide Cluster Compounds via Bis(methyicyclopentadienyl)divanadium Tetrasulfide J. Am. Chem. Soc. 104 7313

  20. (a) Bolinger C M, Rauchfuss T B and Wilson S R 1984 4-Phenyl-1,2,4-triazoline-3,5-dione: A Prosthesis for the μ-η1-S2 Ligand in Organovanadium Sulfide Chemistry J. Am. Chem. Soc. 106 7800; (b) Bose S K, Geetharani K, Ramkumar V, Varghese B and Ghosh S 2010 Chemistry of Vanadaboranes: Synthesis, Structures, and Characterization of Organovanadium Sulfide Clusters with Disulfido Linkage Inorg. Chem. 49 2881; (c) Bose S K, Geetharani K, Sahoo S, Reddy K H K; Varghese B, Jemmis E D and Ghosh S 2011 Synthesis, Characterization, and Electronic Structure of New Type of Heterometallic Boride Clusters. Inorg. Chem. 50 9414; (d) Sahoo S, Mobin S. M and Ghosh S 2010 Direct Insertion of Sulphur, Selenium and Tellurium atoms into Metallaborane Cages using Chalcogen Powders J. Organomet. Chem. 695 945; (e) Bose S K, Mobin S M and Ghosh S 2011 Metallaheteroborane Clusters of Group 5 Transition Metals Derived from Dichalcogenide Ligands J. Organomet. Chem. 696 3121

  21. Nowak I and Ziolek M 1999 Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis Chem. Rev. 99 3603

    CAS  Google Scholar 

  22. Rogachev A V, Gushchin A L, Abramov P A, Kozlova E A, Vicent C, Piryazev D, Barlow A, Samoc M, Humphrey M G, Llusar R, Fedin V P and Sokolov M N 2015 Binuclear Sulfide Niobium Clusters Coordinated by Diimine Ligands: Synthesis, Structure, Photocatalytic Activity and Optical Limiting Properties Eur. J. Inorg. Chem. 2865

    Google Scholar 

  23. (a) Barik S K, Rao C E, Yuvaraj K, Jagan R, Kahlal S, Halet J-F and Ghosh S 2015 Electron‐Precise 1,3‐Bishomocubanes – A Combined Experimental and Theoretical Study Eur. J. Inorg. Chem. 5556; (b) Chakrahari K K V, Thakur A, Mondal B, Ramkumar V and Ghosh S 2013 Hypoelectronic Dimetallaheteroboranes of Group 6 Transition Metals Containing Heavier Chalcogen Elements Inorg. Chem. 52 7923; (c) Joseph B, Barik S K, Ramalakshmi R, Kundu G, Roisnel T, Dorcet V and Ghosh S 2018 Chemistry of Triple‐Decker Sandwich Complexes Containing Four‐Membered Open B2E2 Rings (E = S or Se) Eur. J. Inorg. Chem. 2045

  24. (a) Roy D K, Bose S K, Geetharani K, Chakrahari K K V, Mobin S M and Ghosh S 2012 Synthesis and Structural Characterization of New Divanada‐ and Diniobaboranes Containing Chalcogen Atoms Chem. Eur. J. 18 9983; (b) Geetharani K, Bose S K, Basak D, Suresh V M and Ghosh S 2011 A new entry into ferraborane chemistry: Synthesis and characterization of heteroferraborane complexes Inorg. Chim. Acta 372 42; (c) Shankhari P, Roy D K, Geetharani K, Anju R S, Varghese B and Ghosh S 2013 Synthesis and structural characterization of group 5 dimetallaheteroboranes J. Organomet. Chem. 747 249; (d) Chakrahari K K V, Sharmila D, Barik S K, Mondal B, Varghese B. and Ghosh S 2014 Hypoelectronic Metallaboranes: Synthesis, Structural Characterization and Electronic Structures of Metal-Rich Cobaltaboranes J. Organomet. Chem. 749 188

  25. (a) Kar S, Saha K, Saha S, Bakthavachalam K, Dorcet V and S. Ghosh 2018 Trimetallic Cubane-Type Clusters: Transition-Metal Variation as a Probe of the Roots of Hypoelectronic Metallaheteroboranes Inorg. Chem. 57 10896; (b) Joseph B, Saha K, Prakash R, Nandi C, Roisnel T and Ghosh S 2018 Chalcogenolato-bridged dinuclear half sandwich complexes of ruthenium and iridium Inorg. Chim. Acta 483 106; (c) Ramalakshmi R, Saha K, Paul A and Ghosh S 2016 Reactivity of [Cp*Mo(CO)3Me] with chalcogenated borohydrides Li[BH2E3] and Li[BH3EFc] (Cp* = (η5-C5Me5); E = S, Se or Te; Fc = (C5H5-Fe-C5H4) J. Chem. Sci. 128 1025; (d) Chakrahari K K V, Dhayal R S and Ghosh S 2011 Synthesis and characterization of binuclear μ-oxo and μ-telluro molybdenum(V) complexes, [Cp∗Mo(O)(μ-Te)]2 Polyhedron 30 1048; (e) Anju R S, Saha K, Mondal B, Dorcet V, Roisnel T, Halet J -F and Ghosh S 2014 Chemistry of Diruthenium Analogue of Pentaborane(9) With Heterocumulenes: Toward Novel Trimetallic Cubane-Type Clusters Inorg. Chem. 53 10527

  26. (a) Barik S K, Chowdhury M G, De S, Parameswaran P and Ghosh S 2016 Extended Sandwich Molecules Displaying Direct Metal–Metal Bonds Eur. J. Inorg. Chem. 4546; (b) Ramalakshmi R, Saha K, Roy D K, Varghese B, Phukan A K and Ghosh S 2015 New Routes to a Series of σ‐Borane/Borate Complexes of Molybdenum and Ruthenium Chem. Eur. J. 21 17191; (c) Joseph B, Gomosta S, Barik S, Sinha S K, Roisnel T, Dorcet V, Halet J-F and Ghosh S 2018 Synthesis and characterization of diruthenaborane analogues of pentaborane(11) and hexaborane(10) J. Organomet. Chem. 865 29

  27. Chowdhury M G, Barik S K, Saha K, Kirubakaran B, Banerjee A, Ramkumar V and Ghosh S 2018 Electron Precise Group 5 Dimetallaheteroboranes [{CpV(μ-EPh)}2{μ-η22-BH3E}] and [{CpNb(μ-EPh)}2{μ-η22-B2H4E}] (E = S or Se) Inorg. Chem. 57 985

  28. Heintz R A, Haggerty B S, Wan H, Rheingold A L and Theopold K H 1992 [{Cp*Cr(µ3-H)),]-a Paramagnetic Chromium Hydride with a Cubane Structure Angew. Chem. Int. Ed. 31 1077

    Article  Google Scholar 

  29. (a) Green M L H, Hubert J D and Mountford P 1990 Synthesis of the W ≡ W triply bonded dimers [W2(η-C5H4R)2X4] (X = Cl, R = Me or iPr; X = Br, R = iPr) and X-ray crystal structures of [W(η-C5H i4 Pr)Cl4] and [W2(η-C5H i4 Pr)2Cl4] J. Chem. Soc., Dalton Trans. 3793; (b) Dhayal R S, Sahoo S, Ramkumar V and Ghosh S 2009 Substitution at boron in molybdaborane frameworks: Synthesis and characterization of isomeric (η5-C5Me5Mo)2B5HnXm (when X = Cl: n = 5, 7, 8; m = 4, 2, 1 and X = Me: n = 6, 7; m = 3, 2) J. Organomet. Chem. 694 237

  30. Okamoto T, Yasuda H, Nakamura A, Kai Y, Kanehisa N and Kasai N 1988 Synthesis and Catalysis of Novel Mono-and Bis(diene) Complexes of Niobium and X-ray Structures of Binuclear [Nb(µ-Cl)(C5H5)(s-cis-butadiene)]2 and Mononuclear Nb(C5H5)(s-cis-2,3-dimethylbutadiene)2 J. Am. Chem. Soc. 110 5008

    Article  CAS  Google Scholar 

  31. Ryschkewitsch G E and Nainan K C 1974 Octahydrotriborate (1-) [B3H8] Salts Inorg. Synth. 15 113

    CAS  Google Scholar 

  32. (a) Aldridge S, Fehlner T P and Shang M 1997 Directed Synthesis of Chromium and Molybdenum Metallaborane Clusters. Preparation and Characterization of (Cp*Cr)2B5H9, (Cp*Mo)2B5H9, and (Cp*MoCl)2B4H10 J. Am. Chem. Soc. 119 2339; (b) Dhayal R S, Sahoo S, Reddy K H K, Mobin S M, Jemmis E D and Ghosh S 2010 Vertex-Fused Metallaborane Clusters: Synthesis, Characterization and Electronic Structure of [(η5-C5Me5Mo)3MoB9H18] Inorg. Chem. 49 900; (c) Weller A S, Shang M and Fehlner T P 1999 Synthesis of Mono- and Ditungstaboranes from Reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5Me5). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center Organometallics 18 53; (d) Geetharani K, Bose S K, Pramanik G, Saha T K, Ramkumar V and Ghosh S 2009 An Efficient Route to Group 6 and 8 Metallaborane Compounds: Synthesis of arachno-[Cp*Fe(CO)B3H8] and closo-[(Cp*M)2B5H9] (M = Mo, W) Eur. J. Inorg. Chem. 1483

  33. Prakash R, Bakthavachalam K, Varghese B and Ghosh S 2017 Chlorination of the terminal hydrogen atoms in the hydrogen-rich group 5 dimetallaboranes (Cp*M)2(B2H6)2 (M = Nb, Ta) J. Organomet. Chem. 846 372

    Article  CAS  Google Scholar 

  34. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C 71 3

    Article  Google Scholar 

  35. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, RobbMA, Cheeseman J R, Scalmani G, BaroneV, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A. Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2010 Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT

    Google Scholar 

  36. Schmider H and Becke A D 1998 Optimized density functionals from the extended G2 test set. J. Chem. Phys. 108 9624

    Article  CAS  Google Scholar 

  37. Dolg M, Stoll H and Preuss H A 1993 A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds Theor. Chim. Acta 85 441

    Article  CAS  Google Scholar 

  38. Wiberg K B 1968 Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  39. (a) Reed A E, Weinhold F and Curtiss L A 1988 Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem. Rev. 88 899; (b) Weinhold F and Landis R 2005 Valency and bonding: A natural bond orbital donor-acceptor perspective (Cambridge: U.K.: Cambridge University Press); (c) King R B 1999 Topological Aspects of the Skeletal Bonding in “Isocloso” Metallaboranes Containing “Anomalous” Numbers of Skeletal Electrons Inorg. Chem. 38 5151; (d) King R B 2000 Face-localized bonding models for borane cage ligands intransition metal coordination chemistry Inorg. Chim. Acta 300 537

  40. Chemcraft – graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.

  41. (a) Hashimoto H, Shang M and Fehlner T P 1996 Reactions of an Electronically Unsaturated Chromaborane. Coordination of CS2 to (η5-C5Me5)2Cr2B4H8 and Its Hydroboration to a Methanedithiolato Ligand Organometallics 15 1963; (b) Ho J, Deck K J, Nishihara Y, Shang M and Fehlner T P 1995 High Yield Synthesis and Characterization of Chromaboranes. Comparison of the Geometric, Electronic, and Chemical Properties of an Electronically Unsaturated (η 5-C5H5)2Cr2B4H8) Cluster with Its Saturated Derivative (η 5-C5H5)2Cr2(CO)2B4H6 J. Am. Chem. Soc. 117 10292

  42. Kornienko A Y, Emge T J and Brennan J G 2001 Chalcogen-Rich Lanthanide Clusters:  Cluster Reactivity and the Influence of Ancillary Ligands on Structure J. Am. Chem. Soc. 123 11933

    Article  CAS  Google Scholar 

  43. (a) Pasynskii A A, Denisov F S, Torubaev Yu V, Semenova N I, Novotortsev V M, Ellert O G, Nefedov S E and Lyssenko K A 2000 Antiferromagnetic complexes with metal-metal bonds Part XXIX. Synthesis and molecular structures of heterochalcogenide binuclear complex [π-(CH3C5H4)Cr(µ-SPh)]2Se and trinuclear mixed-metal cluster [π-(CH3C5H4)2Cr2(µ-SPh)](µ3-S)(µ3-Se)Co(CO)2 J. Organomet. Chem. 612 9; (b) Pasynskii A A, Eremenko I L, Rakitin Y-V, Novotortsev V M, Kalinnikov V T, Aleksandrov G G and Struchkov Y-T 1979 Antiferromagnetic Complexes Involving Metal-Metal Bonds I Synthesis and Molecular Structure of An Antiferromagnetic Dimer with a Cr-Cr bond J. Organomet. Chem. 165 57

  44. McPhail A T and Sim G A 1968 Metal–Carbonyl and Metal–Nitrosyl Complexes. Part VI. The Crystal and Molecular Structure of trans-Di-µ-phenylthio-dinitrosylbis-(π-cyclopentadienyl)dichromium(I) J. Chem. Soc. A 1858

    Article  CAS  Google Scholar 

  45. (a) Eremenko I L, Pasynskii A, Kalinnikov V T, Struchkov Y-T and Aleksandrov G G 1981 Nitrosylation of Dicyclopentadienyldi(µ-tert-butylthiolato)(µ-sulfido)-dichromium giving Tert-butylsulfanic Group. Molecular Structures of the Binuclear Complex Cp(NO)Cr(µ-SCMe3)(µ-S-SCMe3)Cr(NO)Cp and Monomer CpCr(NO)2(ONO) Inorg. Chim. Acta 52 107; (b) Goh L Y, Tay M S, Mak T C W and Wang R G 1992 Thiolate-Bridged Dichromium Complexes. Syntheses and Crystal Structures of [CpCr(CO)2(SPh)]2 and [CpCr(SPh)]2S Organometallics 11 1711

  46. Rakoczy H, Schollenberger M, Nuber B and Ziegler M L 1994 [CpMo(μ-Se)(μ-SePh)]2: Ein vierfach chalkogenato-verbrückter Dimolybdän-Komplex mit ungewöhnlicher Struktur J. Organomet. Chem. 467 217

    Article  CAS  Google Scholar 

  47. Pasynskii A A, Blokhin A I, Torubaev Y-V and Dobrokhotova Z-V 2011 Synthesis and Molecular Structures of Tris(thio- and Selenophenyl)stannyl Complexes of Cyclopentadienylcarbonylnitrosylmanganese and Their Reaction Products with Tungsten Carbonyl Russ. J. Coord. Chem. 37 879

    Article  CAS  Google Scholar 

  48. Kolesnichenko V L, Rybakov V B, Aslanov L A and Volkov S V 1997 Synthesis, Structure and Reactivity of Binuclear Metal-Metal Bonded Molybdenum(V) and Tungsten(V) thioselenohalides: Molecular structure of Mo2(μ-S2)2Cl6(SeCl2)2 and W2(μ-S2)2Cl6(SeCl2)2 J. Clust. Sci. 8 27

    Article  CAS  Google Scholar 

  49. Young C G, Kocaba T O, Yan X F, Tiekink E R T, Wei L, Murray H H, Coyle C L and Stiefel E I 1994 Bridging Disulfldo Complexes of Molybdenum and Tungsten Formed by Reductive Sulfurization of Oxo-Molybdenum(VI) Complexes and Reductive Desulfurization of Thio(disulfido)-Tungsten(VI) Complexes Inorg. Chem. 33 6252

    Article  CAS  Google Scholar 

  50. Peldo M A, Shang M and Fehlner T P 2000 Synthesis and structure of [(η5-C5Me5)WCl2(μ-H)]2. A dinuclear tungsten hydride with a double bond formed from the reaction of BH3THF with (η5-C5Me5)WCl4 J. Organomet. Chem. 609 77

    Article  CAS  Google Scholar 

  51. Mondal B, Bag R, Bakthavachalam K, Varghese B and Ghosh S 2017 Synthesis, Structures, and Characterization of Dimeric Neutral Dithiolato‐Bridged Tungsten Complexes Eur. J. Inorg. Chem. 5434

    Google Scholar 

  52. Gorzellik M, Bock H, Gang L, Nuber B and Ziegler M L 1991 Darstellung und Charakterisierung von zweikernigen Oxo-Komplexen des Molybdän und Wolfram mit Chalkogenen (O, S, Se, Te) als Brückenliganden J. Organomet. Chem. 412 95

    Article  CAS  Google Scholar 

  53. Sokolov M, Virovets A, Nadolinnyi V, Hegetschweiler K, Fedin V, Podberezskaya N and Fedorov V 1994 Nb2S4 4+Complexes with 1,1-Dithioacid Ligands Inorg. Chem. 33 3503

    CAS  Google Scholar 

  54. Sokolov M, Imoto H, Saito T and Fedorov V 1999 Substitution of bridging S2 ligands in the [Nb2(μ-S2)2]4+ Core: A Simple Route to [Nb2(Se2)2]4+, [Nb2(S)(Te2)]4+ and [Nb2(S)2]4+ J. Chem. Soc., Dalton Trans. 85

  55. Nied D and Breher F 2011 New perspectives for “non-classical” molecules: heavy [1.1.1]propellanes of group 14 Chem. Soc. Rev. 40 3455

  56. Abramov P A, Sokolov M N, Virovets A V, Mirzaeva I V, Kozlova S G, Vicent C and Fedin V P 2014 Reductive selenidation of [Cp*MoO2Cl]: Synthesis, structure and bonding in new binuclear and trinuclear clusters J. Organomet. Chem. 770 94

    Article  CAS  Google Scholar 

  57. Messerle L 1988 Metal-Metal Bonded Dinuclear and Organodimetallic Complexes of the Early Transition Metals (Groups 4 and 5): Synthesis, Structure, and Reactivity Chem. Rev. 88 1229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific & Industrial Research (CSIR) (Project No. 01(2939)/18/emr-ii), New Delhi, India. DST-FIST, India, is gratefully acknowledged for the HRMS facility. M. B., R. P., M. G. C. and B. R. are grateful to IIT Madras and C.N. is grateful to DST-INSPIRE, India for fellowship. The computational facility of IIT Madras is gratefully acknowledged. We thank Dr. C. Ghosh for X-ray data collection and Dr. B. Varghese and Mr. V. Ramkumar for X–ray structure analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundargopal Ghosh.

Additional information

Special Issue on 150 years of the Periodic Table

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, M., Prakash, R., Nandi, C. et al. Syntheses and structures of chalcogen-bridged binuclear group 5 and 6 metal complexes. J Chem Sci 131, 123 (2019). https://doi.org/10.1007/s12039-019-1703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1703-9

Keywords

Navigation