Skip to main content
Log in

Nanoemulsion Thermoreversible Pluronic F127-Based Hydrogel Containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil Produced a Lasting Anti-hyperalgesic Effect in Chronic Noninflammatory Widespread Pain in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We evaluated if a nanostructured thermoreversible Pluronic F127-based hydrogel incorporated with Hyptis pectinata leaf essential oil (NE-EOH) produces a long-lasting anti-hyperalgesic effect on chronic muscle pain in an animal model. We induced chronic muscle pain by injecting the gastrocnemius with saline injections. Paw and muscle withdrawal thresholds and motor performance were evaluated after treatment and compared with morphine, diazepam, or vehicle. Naloxone and methysergide administration tested the involvement of opioid and serotonin receptors, respectively. Sites of action in the central nervous system for the NE-EOH were examined by measuring substance P (SP) levels in the spinal cord and Fos protein in the brainstem. NE-EOH increased paw and muscle withdrawal thresholds when compared with vehicle but had no effect on motor function. This analgesic effect was reversed by both naloxone and methysergide. NE-EOH decreased elevated substance P levels and reduced Fos-labeled neurons in the spinal cord and increased the number of Fos-labeled neurons in the periaqueductal gray (PAG), nucleus raphe magnus (NRM), and locus coeruleus (LC). NE-EOH was shown to produce a lasting anti-hyperalgesic effect. It uses opioid and serotonin receptors, activates brainstem inhibitory pathways, and reduces the release of excitatory neurotransmitters in the spinal cord and is a substance with potential to be used in the treatment of noninflammatory pain conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeSantana JM, Sluka KA (2008) Central mechanisms in the maintenance of chronic widespread noninflammatory muscle pain. Current Pain & Headache Reports 12:338–343

    Article  Google Scholar 

  2. Wolfe F, Ross K, Anderson J, Russell IJ, Hebert L (1995) The prevalence and characteristics of fibromyalgia in the general population. Rheumatoid Arthritis 38:19–28

    Article  CAS  Google Scholar 

  3. Fallon MT (2013) Neuropathic pain in cancer. Br J Anaesth 111:105–111

    Article  CAS  PubMed  Google Scholar 

  4. McCain GA (1994) Fibromyalgia and myofacial pain syndromes. Volume 1, 1st edn. Churchill Livingstone, New York

    Google Scholar 

  5. Nagakura Y (2015) Challenges in drug discovery for overcoming ‘dysfunctional pain’: an emerging category of chronic pain. Expert Opin Drug Discovery 10(10):1043–1045

    Article  Google Scholar 

  6. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garg G, Adams JD (2012) Treatment of neuropathic pain with plant medicines. Chinese Journal of Integrative Medicine 18:565–570

    Article  PubMed  Google Scholar 

  9. Guimarães AG, Serafini MR, Quintans-Júnior LJ (2014) Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opinion on Therapeutic Patents 24:243–265

    Article  PubMed  Google Scholar 

  10. Nascimento SS, DeSantana JM, Nampo FK, Ribeiro EAN, Silva DL, Araújo-Júnior JX, Almeida JRGS, Bonjardim LR et al (2013) Efficacy and safety of medicinal plants or related-natural products for fibromyalgia: a systematic review. Evid Based Complement Alternat Med 2103:1–10

    Article  Google Scholar 

  11. Nascimento SS, Camargo EA, DeSantana JM, Araújo AAS, Menezes PP, Lucca-Júnior W, Albuquerque-Júnior RL, Bonjardim LR et al (2014) Linalool and linalool complexed in β-cyclodextrin produce anti-hyperalgesic activity and increase Fos protein expression in animal model for fibromyalgia. Naunyn-Schmiedeberg's Archives of Pharmacology 387(10):935–942

    Article  CAS  PubMed  Google Scholar 

  12. Nascimento SS, Araújo AAS, Brito RG, Serafini MR, Menezes PP, DeSantana JM, Lucca W, Alves PB et al (2015) Cyclodextrin-complexed Ocimum basilicum leaves essential oil increases Fos protein expression in the central nervous system and produce an antihyperalgesic effect in animal models for fibromyalgia. Int J Mol Sci 16(1):547–563

    Google Scholar 

  13. Quintans JSS, Antoniolli AR, Almeida JRGS, Santana-Filho VJ, Quintans-Júnior LJ (2014) Natural products evaluated in neuropathic pain models—a systematic review. Basic & Clinical Pharmacology & Toxicology 114:442–450

    Article  CAS  Google Scholar 

  14. Brito RG, Araújo AAS, Quintans JSS, Sluka KA, Quintans-Júnior LJ (2015) Enhanced analgesic activity by cyclodextrins—a systematic review and meta-analysis. Expert Opinion on Drug Delivery

  15. Oliveira MG, Guimarães AG, Araújo AAS, Quintans JSS, Santos MRV, Quintans-Júnior LJ (2015) Cyclodextrins: improving the therapeutic response of analgesic drugs: a patent review. Expert Opinion on Therapeutic Patents 25(8):897–907

    Article  PubMed  Google Scholar 

  16. Quintans JSS, Menezes PP, Santos MRV, Bonjardim LR, Almeida JRGS, Gelain DP, Araújo AAS, Quintans-Júnior LJ (2013) Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 20:436–440

    Article  Google Scholar 

  17. Kempe S, Mader K (2012) In situ forming implants—an attractive formulation principle for parenteral depot formulations. J Control Release 161:668–679

    Article  CAS  PubMed  Google Scholar 

  18. Radivojša M, Grabnar I, Ahlin Grabnar P (2013) Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation. Eur J Pharm Sci 50:93–10

    Article  PubMed  Google Scholar 

  19. Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A (2006) Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Sci 9:339–358

    Google Scholar 

  20. Liu Y, Lu WL, Wang JC, Zhang X, Zhang H, Wang XQ, Zhou TY, Zhang G (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117:387–395

    Article  CAS  PubMed  Google Scholar 

  21. Shin BK, Baek EJ, Choi SG, Davaa E, Nho YC, Lim YM, Park JS, Huh KM et al (2013) Preparation and irradiation of Pluronic F127-based thermoreversible and mucoadhesive hydrogel for local delivery of naproxen. Drug Dev Ind Pharm 39:1874–1880

    Article  CAS  PubMed  Google Scholar 

  22. McNeil M, Facey P, Porter R (2011) Essential oils from the Hyptis genus-a review (1909-2009). Nat Prod Commun 6:1775–1796

    CAS  PubMed  Google Scholar 

  23. Raymundo LJ, Guilhon CC, Alviano DS, Matheus ME, Antoniolli AR, Cavalcanti SC, Alves PB, Alviano CS et al (2011) Characterisation of the anti-inflammatory and antinociceptive activities of the Hyptis pectinata (L.) Poit essential oil. J Ethnopharmacol 134:725–732

    Article  CAS  PubMed  Google Scholar 

  24. Bispo MD, Mourão RH, Franzotti EM, Bomfim KB, Arrigoni-Blank MF, Moreno MP, Marchioro M, Antoniolli AR (2001) Antinociceptive and antiedematogenic effects of the aqueous extract of Hyptis pectinata leaves in experimental animals. J Ethnopharmacol 76:81–86

    Article  CAS  PubMed  Google Scholar 

  25. Lisboa AC, Mello IC, Nunes RS, Dos Santos MA, Antoniolli AR, Marçal RM, Cavalvanti SH (2006) Antinociceptive effect of Hyptis pectinata leaves extracts. Fitoterapia 77:439–442

    Article  PubMed  Google Scholar 

  26. Menezes PP, Araujo ASS, Dória GAA, Quintans-Júnior LJ, Oliveira MGB, Santos MRV, Oliveira JF, Matos JR et al (2015) Physicochemical characterization and analgesic effect of inclusion complexes of essential oil from Hyptis pectinata L. Poit leaves with beta-cyclodextrin. Curr Pharm Biotechnol 16:440–450

    Article  CAS  Google Scholar 

  27. Paixão MS, Melo MS, Oliveira MGB, Santana MT, Lima AC, Damascena NP, Dias AS, Araújo BS et al (2013) Hyptis pectinata: redox protection and orofacial antinociception. Phytother Res 27:1328–1333

    Article  PubMed  Google Scholar 

  28. Quintans-Júnior LJ, Araújo AAS, Brito RG, Santos PL, Quintans JSS, Menezes PP, Serafini MR, Silva GF et al (2016) β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sci 149:34–41

    Article  PubMed  Google Scholar 

  29. Siqueira-Lima PS, Araújo AAS, Lucchese AM, Quintans JSS, Menezes PP, Alves PB, De Lucca-Júnior W, Santos MRV et al (2014) β-cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice—evidence of possible involvement of descending inhibitory pain modulation pathway. Basic & Clinical Pharmacology & Toxicology 114:188–196

    Article  CAS  Google Scholar 

  30. Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation

  31. Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46

    Article  CAS  PubMed  Google Scholar 

  32. Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137:662–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skyba DA, Radhakrishnan R, Sluka KA (2005) Characterization of a method for measuring primary hyperalgesia of deep somatic tissue. Journal of Pain 6:41–47

    Article  PubMed  Google Scholar 

  34. DeSantana JM, Da Cruz KM, Sluka KA (2013) Animal models of fibromyalgia. Arthritis Research & Therapy 15:222

    Article  Google Scholar 

  35. Erin N, Ulusoy O (2009) Differentiation of neuronal from non-neuronal substance P. Regul Pept 152:108–113

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates. Volume 1, 1st edn. Elsevier, United States

    Google Scholar 

  37. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI et al (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  40. Allen BJ, Rogers SD, Ghilardi JR, Menning PM, Kuskowski MA, Basbaum AI, Simone DA, Mantyh PW (1997) Noxious cutaneous thermal stimuli induce a graded release of endogenous substance P in the spinal cord: imaging peptide action in vivo. J Neurosci 17(15):5921–5927

    CAS  PubMed  Google Scholar 

  41. Cimmino MA, Ferrone C, Cutolo M (2011) Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol 25:173–183

    Article  PubMed  Google Scholar 

  42. Gregory NS, Sluka KA (2014) Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 20:327–348

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kissin I (2010) The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg 110:780–789

    Article  CAS  PubMed  Google Scholar 

  44. Tetteh E, Morris S (2013) Systematic review of drug administration costs and implications for biopharmaceutical manufacturing. Applied Health Economics and Health Policy 11:445–456

    Article  PubMed  Google Scholar 

  45. Kwon SK, Kim HB, Song JJ, Cho CG, Park SW, Choi JS, Ryu J, Lee JH (2014) Vocal fold augmentation with injectable polycaprolactone microspheres/pluronic f127 hydrogel: long-term in vivo study for the treatment of glottal insufficiency. PLoS One 9:e85512

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agrawal V, Gupta V, Ramteke S, Trivedi P (2010) Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan. AAPS PharmSciTech 11:1718–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akash MS, Rehman K (2015) Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives. J Control Release 209:120–138

    Article  CAS  PubMed  Google Scholar 

  48. Batista PA, Werner MF, Oliveira EC, Burgos L, Pereira P, Brum LF, Santos AR (2008) Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect of (−)-linalool in mice. Neurosci Lett 440(3):299–303

    Article  CAS  PubMed  Google Scholar 

  49. Guimarães AG, Quintans JSS, Quintans-Junior LJ (2013) Monoterpenes with analgesic activity—a systematic review. Phytother Res 27:1–15

    Article  PubMed  Google Scholar 

  50. Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120(11):3779–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Barker EL, ed. Pharmacological Reviews 66(1), 334–395

  52. Paixão MS, Melo MS, Damascena NP, Araujo AAS, Soares AF, Oliveira DV, Almeida FTC, Amaral FS et al (2015) Hyptis pectinata gel prevents alveolar bone resorption in experimental periodontitis in rats. Revista Brasileira Farmacognosia 25:35–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucindo J. Quintans-Júnior.

Ethics declarations

Research Funding

This study was supported by CNPq, Brazil [Grant nos. 441969/2014-3, 200636/2012-0, 470774/2011-8]; FAPITEC, SE, Brazil; CAPES, Brazil; and FINEP, Brazil. This study was also supported by National Institutes of Health grants AR061371 and AR052316 to KAS.

Conflict of Interest

The authors report no conflict of interest. KAS serves as a consultant for Bayer, Inc. and receives research support from Medtronic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintans-Júnior, L.J., Brito, R.G., Quintans, J.S.S. et al. Nanoemulsion Thermoreversible Pluronic F127-Based Hydrogel Containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil Produced a Lasting Anti-hyperalgesic Effect in Chronic Noninflammatory Widespread Pain in Mice. Mol Neurobiol 55, 1665–1675 (2018). https://doi.org/10.1007/s12035-017-0438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0438-1

Keywords

Navigation