Skip to main content

Anatomical and Physiological Factors Contributing to Chronic Muscle Pain

  • Chapter
  • First Online:
Behavioral Neurobiology of Chronic Pain

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 20))

Abstract

Chronic muscle pain remains a significant source of suffering and disability despite the adoption of pharmacologic and physical therapies. Muscle pain is mediated by free nerve endings distributed through the muscle along arteries. These nerves project to the superficial dorsal horn and are transmitted primarily through the spinothalamic tract to several cortical and subcortical structures, some of which are more active during the processing of muscle pain than other painful conditions. Mechanical forces, ischemia, and inflammation are the primary stimuli for muscle pain, which is reflected in the array of peripheral receptors contributing to muscle pain-ASIC, P2X, and TRP channels. Sensitization of peripheral receptors and of central pain processing structures are both critical for the development and maintenance of chronic muscle pain. Further, variations in peripheral receptors and central structures contribute to the significantly greater prevalence of chronic muscle pain in females.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahacic K, KÃ¥reholt I (2010) Prevalence of musculoskeletal pain in the general Swedish population from 1968 to 2002: age, period, and cohort patterns. Pain 151:206–214. doi:10.1016/j.pain.2010.07.011

    PubMed  Google Scholar 

  • Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci 20:4680–4685

    CAS  PubMed  Google Scholar 

  • Alvarez P, Green PG, Levine JD (2013) Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol Psychiatry. doi:10.1016/j.biopsych.2013.04.006

    PubMed Central  PubMed  Google Scholar 

  • Ambalavanar R, Yallampalli C, Yallampalli U, Dessem D (2007) Injection of adjuvant but not acidic saline into craniofacial muscle evokes nociceptive behaviors and neuropeptide expression. Neuroscience 149:650–659. doi:10.1016/j.neuroscience.2007.07.058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azevedo LF, Costa-Pereira A, Mendonça L et al (2012) Epidemiology of chronic pain: a population-based nationwide study on its prevalence, characteristics and associated disability in Portugal. J Pain 13:773–783. doi:10.1016/j.jpain.2012.05.012

    PubMed  Google Scholar 

  • Bangsbo J, Johansen L, Graham T, Saltin B (1993) Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J Physiol (Lond) 462:115–133

    CAS  Google Scholar 

  • Barabas ME, Stucky CL (2013) TRPV1, but not TRPA1, in primary sensory neurons contributes to cutaneous incision-mediated hypersensitivity. Mol Pain 9:9. doi:10.1186/1744-8069-9-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bement MKH, Sluka KA (2007) Co-localization of p-CREB and p-NR1 in spinothalamic neurons in a chronic muscle pain model. Neurosci Lett 418:22–27. doi:10.1016/j.neulet.2007.02.078

    CAS  PubMed  Google Scholar 

  • Bennett RM (2007) Myofascial pain syndromes and their evaluation. Best Pract Res Clin Rheumatol 21:427–445. doi:10.1016/j.berh.2007.02.014

    PubMed  Google Scholar 

  • Birdsong WT, Fierro L, Williams FG et al (2010) Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 68:739–749. doi:10.1016/j.neuron.2010.09.029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE (1971) Tissue temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221(2):427–431

    Google Scholar 

  • Cairns BE, Hu JW, Arendt-Nielsen L et al (2001) Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86:782–791

    CAS  PubMed  Google Scholar 

  • Calixto JB, Kassuya CAL, André E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther 106:179–208. doi:10.1016/j.pharmthera.2004.11.008

    CAS  PubMed  Google Scholar 

  • Campanucci VA, Zhang M, Vollmer C, Nurse CA (2006) Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition. J Neurosci 26:9482–9493. doi:10.1523/JNEUROSCI.1672-06.2006

    CAS  PubMed  Google Scholar 

  • Castrillon EE, Cairns BE, Wang K et al (2012) Comparison of glutamate-evoked pain between the temporalis and masseter muscles in men and women. Pain 153:823–829. doi:10.1016/j.pain.2012.01.003

    PubMed  Google Scholar 

  • Chacur M, Lambertz D, Hoheisel U, Mense S (2009) Role of spinal microglia in myositis-induced central sensitisation: an immunohistochemical and behavioural study in rats. Eur J Pain 13:915–923. doi:10.1016/j.ejpain.2008.11.008

    PubMed  Google Scholar 

  • Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signalling in health and disease. Clin Sci 110:167–173. doi:10.1042/CS20050163

    CAS  PubMed  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L et al (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431. doi:10.1038/377428a0

    CAS  PubMed  Google Scholar 

  • Chen W-K, Liu IY, Chang Y-T et al (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30:10360–10368. doi:10.1523/JNEUROSCI.1041-10.2010

    CAS  PubMed  Google Scholar 

  • Cheng S-J, Chen C-C, Yang H-W et al (2011) Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci 31:2258–2270. doi:10.1523/JNEUROSCI.5564-10.2011

    CAS  PubMed  Google Scholar 

  • Cimmino MA, Ferrone C, Cutolo M (2011) Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol 25:173–183. doi:10.1016/j.berh.2010.01.012

    PubMed  Google Scholar 

  • Coderre TJ, Melzack R (1987) Cutaneous hyperalgesia: contributions of the peripheral and central nervous systems to the increase in pain sensitivity after injury. Brain Res 404:95–106

    CAS  PubMed  Google Scholar 

  • Coderre TJ, Melzack R (1985) Increased pain sensitivity following heat injury involves a central mechanism. Behav Brain Res 15:259–262

    CAS  PubMed  Google Scholar 

  • Connor M, Naves LA, McCleskey EW (2005) Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain 1:31. doi:10.1186/1744-8069-1-31

    PubMed Central  PubMed  Google Scholar 

  • Da Silva LF, DeSantana JM, Sluka KA (2010a) Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats. J Pain 11:378–387. doi:10.1016/j.jpain.2009.08.006

    PubMed Central  PubMed  Google Scholar 

  • Da Silva LFS, Walder RY, Davidson BL et al (2010b) Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain 151:155–161. doi:10.1016/j.pain.2010.06.037

    PubMed Central  PubMed  Google Scholar 

  • Dannecker EA, Liu Y, Rector RS et al (2012) Sex differences in exercise-induced muscle pain and muscle damage. J Pain 13:1242–1249. doi:10.1016/j.jpain.2012.09.014

    PubMed Central  PubMed  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ et al (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160. doi:10.1096/fj.08-109579

    PubMed  Google Scholar 

  • Deising S, Weinkauf B, Blunk J, et al (2012) NGF-evoked sensitization of muscle fascia nociceptors in humans. Pain 1–7. doi:10.1016/j.pain.2012.04.033

  • Delliaux S, Brerro-Saby C, Steinberg JG, Jammes Y (2009) Reactive oxygen species activate the group IV muscle afferents in resting and exercising muscle in rats. Pflugers Arch 459:143–150. doi:10.1007/s00424-009-0713-8

    CAS  PubMed  Google Scholar 

  • Dessem D, Ambalavanar R, Evancho M et al (2010) Eccentric muscle contraction and stretching evoke mechanical hyperalgesia and modulate CGRP and P2X(3) expression in a functionally relevant manner. Pain 149:284–295. doi:10.1016/j.pain.2010.02.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deval E, Noël J, Lay N et al (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055. doi:10.1038/emboj.2008.213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diehl B, Hoheisel U, Mense S (1988) Histological and neurophysiological changes induced by carrageenan in skeletal muscle of cat and rat. Agents Actions 25:210–213

    CAS  PubMed  Google Scholar 

  • Diers M, Schley MT, Rance M et al (2011) Differential central pain processing following repetitive intramuscular proton/prostaglandin E2 injections in female fibromyalgia patients and healthy controls. Eur J Pain 15:716–723. doi:10.1016/j.ejpain.2010.12.002

    CAS  PubMed  Google Scholar 

  • Dina OA, Aley KO, Isenberg W et al (2001) Sex hormones regulate the contribution of PKCε and PKA signalling in inflammatory pain in the rat. Eur J Neurosci 13:2227–2233

    CAS  PubMed  Google Scholar 

  • Dina OA, Levine JD, Green PG (2008) Muscle inflammation induces a protein kinase Cepsilon-dependent chronic-latent muscle pain. J Pain 9:457–462. doi:10.1016/j.jpain.2008.01.328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dina OA, Levine JD, Green PG (2011) Enhanced cytokine-induced mechanical hyperalgesia in skeletal muscle produced by a novel mechanism in rats exposed to unpredictable sound stress. Eur J Pain 15:796–800. doi:10.1016/j.ejpain.2011.02.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eibl JK, Strasser BC, Ross GM (2012) Structural, biological, and pharmacological strategies for the inhibition of nerve growth factor. Neurochem Int 61:1266–1275. doi:10.1016/j.neuint.2012.10.008

    CAS  PubMed  Google Scholar 

  • Ernberg M, Hedenberg-Magnusson B, Alstergren P, Kopp S (1999) The level of serotonin in the superficial masseter muscle in relation to local pain and allodynia. Life Sci 65:313–325

    CAS  PubMed  Google Scholar 

  • Faulkner JA, Brooks SV, Opiteck JA (1993) Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther 73:911–921

    CAS  PubMed  Google Scholar 

  • Foreman RD, Schmidt RF, Willis WD (1979) Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J Physiol (Lond) 286:215–231

    CAS  PubMed Central  Google Scholar 

  • Frey Law LA, Sluka KA, McMullen T et al (2008) Acidic buffer induced muscle pain evokes referred pain and mechanical hyperalgesia in humans. Pain 140:254–264. doi:10.1016/j.pain.2008.08.014

    PubMed  Google Scholar 

  • Fu XW, Nurse CA, Cutz E (2004) Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission. Biol Chem 385:275–284. doi:10.1515/BC.2004.022

    CAS  PubMed  Google Scholar 

  • Fujii Y, Ozaki N, Taguchi T et al (2008) TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 140:292–304. doi:10.1016/j.pain.2008.08.013

    CAS  PubMed  Google Scholar 

  • Gao Z, Li JD, Sinoway LI, Li J (2007) Effect of muscle interstitial pH on P2X and TRPV1 receptor-mediated pressor response. J Appl Physiol 102:2288–2293. doi:10.1152/japplphysiol.00161.2007

    CAS  PubMed  Google Scholar 

  • Gautam M, Benson CJ (2013) Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB J 27:793–802. doi:10.1096/fj.12-220400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson W, Arendt-Nielsen L, Taguchi T et al (2009) Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp Brain Res 194:299–308. doi:10.1007/s00221-008-1699-8

    PubMed  Google Scholar 

  • Green DP, Ruparel S, Roman L et al (2013) Role of endogenous TRPV1 agonists in a postburn pain model of partial-thickness injury. Pain. doi:10.1016/j.pain.2013.07.040

    PubMed Central  Google Scholar 

  • Green PG, Alvarez P, Gear RW et al (2011) Further validation of a model of fibromyalgia syndrome in the rat. J Pain 12:811–818. doi:10.1016/j.jpain.2011.01.006

    PubMed Central  PubMed  Google Scholar 

  • Greenspan JD, Craft RM, LeResche L, et al (2007) Studying sex and gender differences in pain and analgesia: a consensus report. Pain 132:S26–S45

    Google Scholar 

  • Gregory NS, Gibson-Corley K, Frey-Law L, Sluka KA (2013) Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain. doi:10.1016/j.pain.2013.07.047

    PubMed  Google Scholar 

  • Han SR, Lee MK, Lim KH et al (2008) Intramuscular administration of morphine reduces mustard-oil-induced craniofacial-muscle pain behavior in lightly anesthetized rats. Eur J Pain 12:361–370. doi:10.1016/j.ejpain.2007.07.002

    CAS  PubMed  Google Scholar 

  • Hanna RL, Kaufman MP (2004) Activation of thin-fiber muscle afferents by a P2X agonist in cats. J Appl Physiol 96:1166–1169. doi:10.1152/japplphysiol.01020.2003

    CAS  PubMed  Google Scholar 

  • Hathway G, Fitzgerald M (2006) Time course and dose-dependence of nerve growth factor-induced secondary hyperalgesia in the mouse. J Pain 7:57–61. doi:10.1016/j.jpain.2005.08.003

    CAS  PubMed  Google Scholar 

  • Hertel HC, Howaldt B, Mense S (1976) Responses of group IV and group III muscle afferents to thermal stimuli. Brain Res 113:201–205

    CAS  PubMed  Google Scholar 

  • Hoheisel U, Mense S (1989) Long-term changes in discharge behaviour of cat dorsal horn neurones following noxious stimulation of deep tissues. Pain 36:239–247

    CAS  PubMed  Google Scholar 

  • Hoheisel U, Mense S, Simons DG, Yu XM (1993) Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain? Neurosci Lett 153:9–12

    CAS  PubMed  Google Scholar 

  • Hoheisel U, Reinöhl J, Unger T, Mense S (2004) Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain 110:149–157. doi:10.1016/j.pain.2004.03.043

    CAS  PubMed  Google Scholar 

  • Honore P, Kage K, Mikusa J et al (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19

    CAS  PubMed  Google Scholar 

  • Hucho TB, Dina OA, Kuhn J, Levine JD (2006) Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci 24:527–534. doi:10.1111/j.1460-9568.2006.04913.x

    PubMed  Google Scholar 

  • Ikeuchi M, Kolker SJ, Burnes LA et al (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137:662–669. doi:10.1016/j.pain.2008.01.020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4:869–870. doi:10.1038/nn0901-869

    CAS  PubMed  Google Scholar 

  • Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123:371–385. doi:10.1016/j.pharmthera.2009.05.009

    CAS  PubMed  Google Scholar 

  • Ito N, Ruegg UT, Kudo A et al (2013) Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy. Channels (Austin) 7:221–224. doi:10.4161/chan.24583

    CAS  Google Scholar 

  • Jankowski MP, Rau KK, Ekmann KM et al (2013) Comprehensive phenotyping of group III and IV muscle afferents in mouse. J Neurophysiol 109:2374–2381. doi:10.1152/jn.01067.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji Y, Tang B, Cao D-Y et al (2012) Sex differences in spinal processing of transient and inflammatory colorectal stimuli in the rat. Pain 153:1965–1973. doi:10.1016/j.pain.2012.06.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaan TKY, Yip PK, Patel S et al (2010) Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133:2549–2564. doi:10.1093/brain/awq194

    PubMed  Google Scholar 

  • Karamouzis M, Karamouzis I, Vamvakoudis E et al (2001) The response of muscle interstitial prostaglandin E2(PGE2), prostacyclin I2(PGI2) and thromboxane A2(TXA2) levels during incremental dynamic exercise in humans determined by in vivo microdialysis. Prostaglandins Leukot Essent Fatty Acids 64:259–263. doi:10.1054/plef.2001.0269

    CAS  PubMed  Google Scholar 

  • Kawakita K, Dostrovsky JO, Tang JS, Chiang CY (1993) Responses of neurons in the rat thalamic nucleus submedius to cutaneous, muscle and visceral nociceptive stimuli. Pain 55:327–338

    CAS  PubMed  Google Scholar 

  • Keay KA, Li QF, Bandler R (2000) Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats. Neurosci Lett 290:157–160

    CAS  PubMed  Google Scholar 

  • Khasar SG, Burkham J, Dina OA et al (2008) Stress induces a switch of intracellular signaling in sensory neurons in a model of generalized pain. J Neurosci 28:5721–5730. doi:10.1523/JNEUROSCI.0256-08.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khasar SG, Dina OA, Green PG, Levine JD (2009) Sound stress-induced long-term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines. J Pain 10:1073–1077. doi:10.1016/j.jpain.2009.04.005

    PubMed Central  PubMed  Google Scholar 

  • Khasar SG, Green PG, Gear RW et al (2003a) Gonadal hormones do not account for sexual dimorphism in vagal modulation of nociception in the rat. J Pain 4:190–196

    CAS  PubMed  Google Scholar 

  • Khasar SG, Green PG, Levine JD (2005) Repeated sound stress enhances inflammatory pain in the rat. Pain 116:79–86. doi:10.1016/j.pain.2005.03.040

    PubMed  Google Scholar 

  • Khasar SG, Green PG, Miao FJ-P, Levine JD (2003b) Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat. Eur J Neurosci 17:909–915

    PubMed  Google Scholar 

  • Khasar SG, Miao FJ-P, Gear RW et al (2003c) Vagal modulation of bradykinin-induced mechanical hyperalgesia in the female rat. J Pain 4:278–283

    PubMed  Google Scholar 

  • Kindig AE, Heller TB, Kaufman MP (2005) VR-1 receptor blockade attenuates the pressor response to capsaicin but has no effect on the pressor response to contraction in cats. Am J Physiol Heart Circ Physiol 288:H1867–H1873. doi:10.1152/ajpheart.00735.2004

    CAS  PubMed  Google Scholar 

  • Kniffki KD, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res. doi:10.1007/BF00239809

    PubMed  Google Scholar 

  • Kniffki KD, Mizumura K (1983) Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. J Neurophysiol 49:649–661

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Fukuoka T, Yamanaka H et al (2005) Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. J Comp Neurol 481:377–390. doi:10.1002/cne.20393

    CAS  PubMed  Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (Lond) 273:179–194

    CAS  Google Scholar 

  • Lewin GR, Winter J, McMahon SB (1992) Regulation of afferent connectivity in the adult spinal cord by nerve growth factor. Eur J Neurosci 4:700–707. doi:10.1111/j.1460-9568.1992.tb00179.x

    CAS  PubMed  Google Scholar 

  • Li J, King NC, Sinoway LI (2003) ATP concentrations and muscle tension increase linearly with muscle contraction. J Appl Physiol 95:577–583. doi:10.1152/japplphysiol.00185.2003

    CAS  PubMed  Google Scholar 

  • Li J, King NC, Sinoway LI (2005) Interstitial ATP and norepinephrine concentrations in active muscle. Circulation 111:2748–2751. doi:10.1161/CIRCULATIONAHA.104.510669

    CAS  PubMed  Google Scholar 

  • Li J, Maile MD, Sinoway AN, Sinoway LI (2004) Muscle pressor reflex: potential role of vanilloid type 1 receptor and acid-sensing ion channel. J Appl Physiol 97:1709–1714. doi:10.1152/japplphysiol.00389.2004

    CAS  PubMed  Google Scholar 

  • Li J, Sinoway LI (2002) ATP stimulates chemically sensitive and sensitizes mechanically sensitive afferents. Am J Physiol Heart Circ Physiol 283:H2636–H2643. doi:10.1152/ajpheart.00395.2002

    CAS  PubMed  Google Scholar 

  • Light AR, Hughen RW, Zhang J et al (2008) Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol 100:1184–1201. doi:10.1152/jn.01344.2007

    CAS  PubMed  Google Scholar 

  • Lin C-CJ, Chen W-N, Chen C-J et al (2011) An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci USA. doi:10.1073/pnas.1108903108

    Google Scholar 

  • Ling L-J, Honda T, Shimada Y et al (2003) Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 461:140–150. doi:10.1002/cne.10619

    PubMed  Google Scholar 

  • Lingueglia E, De Weille JR, Bassilana F et al (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778–29783

    CAS  PubMed  Google Scholar 

  • Lishko PV, Procko E, Jin X et al (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918. doi:10.1016/j.neuron.2007.05.027

    CAS  PubMed  Google Scholar 

  • Lloyd DPC, Chang HT (1948) Afferent fibers in muscle nerves. J Neurophysiol 11:199–207

    CAS  PubMed  Google Scholar 

  • Luo Z, Ma L, Zhao Z et al (2012) TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Res 22:551–564. doi:10.1038/cr.2011.205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malm C, Nyberg P, Engstrom M et al (2000) Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol (Lond) 529(Pt 1):243–262

    CAS  Google Scholar 

  • Martin V, Dousset E, Laurin J et al (2009) Group III and IV muscle afferent discharge patterns after repeated lengthening and shortening actions. Muscle Nerve 40:827–837. doi:10.1002/mus.21368

    PubMed  Google Scholar 

  • Martinez-Lavin M (2007) Stress, the stress response system, and fibromyalgia. Arthritis Res Ther 9:216

    Google Scholar 

  • Matsumoto K, Lo MW, Hosoya T et al (2012) Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice. Lab Invest 92:769–782. doi:10.1038/labinvest.2012.14

    CAS  PubMed  Google Scholar 

  • Mease P (2005) Fibromyalgia syndrome: review of clinical presentation, pathogenesis, outcome measures, and treatment. J Rheumatol Suppl 75:6–21

    PubMed  Google Scholar 

  • Mebane H, Turnbach ME, Randich A (2003) Spinal EP receptors mediating prostaglandin E2-induced mechanical hyperalgesia, thermal hyperalgesia, and touch-evoked allodynia in rats. J Pain 4:392–399

    CAS  PubMed  Google Scholar 

  • Mense S (1977) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol (Lond) 267:75–88

    CAS  Google Scholar 

  • Mense S, Craig AD (1988) Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius-soleus muscle in the cat. Neuroscience 26:1023–1035

    CAS  PubMed  Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol (Lond) 363:403–417

    CAS  Google Scholar 

  • Meotti FC, Campos R, da Silva K et al (2012) Inflammatory muscle pain is dependent on the activation of kinin B1 and B2 receptors and intracellular kinase pathways. Br J Pharmacol 166:1127–1139. doi:10.1111/j.1476-5381.2012.01830.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4:1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Min M-Y, Yang H-W, Yen C-T et al (2011) ERK, synaptic plasticity and acid-induced muscle pain. Commun Integr Biol 4:394–396. doi:10.4161/cib.4.4.15694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miranda H, Kaila-Kangas L, Heliövaara M et al (2010) Musculoskeletal pain at multiple sites and its effects on work ability in a general working population. Occup Environ Med 67:449–455. doi:10.1136/oem.2009.048249

    PubMed  Google Scholar 

  • Molliver DC, Immke DC, Fierro L et al (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35. doi:10.1186/1744-8069-1-35

    PubMed Central  PubMed  Google Scholar 

  • Moriyama T, Higashi T, Togashi K et al (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3. doi:10.1186/1744-8069-1-3

    PubMed Central  PubMed  Google Scholar 

  • Murase S, Terazawa E, Queme F et al (2010) Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci 30:3752–3761. doi:10.1523/JNEUROSCI.3803-09.2010

    CAS  PubMed  Google Scholar 

  • Mørk H, Ashina M, Bendtsen L et al (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153. doi:10.1016/S1090-3801(02)00096-4

    PubMed  Google Scholar 

  • Nakao A, Takahashi Y, Nagase M et al (2012) Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala. Mol Pain 8:51. doi:10.1186/1744-8069-8-51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nasu T, Taguchi T, Mizumura K (2010) Persistent deep mechanical hyperalgesia induced by repeated cold stress in rats. Eur J Pain 14:236–244. doi:10.1016/j.ejpain.2009.05.009

    PubMed  Google Scholar 

  • Oliveira MCG, Pelegrini-da-Silva A, Tambeli CH, Parada CA (2009) Peripheral mechanisms underlying the essential role of P2X3, 2/3 receptors in the development of inflammatory hyperalgesia. Pain 141:127–134. doi:10.1016/j.pain.2008.10.024

    CAS  PubMed  Google Scholar 

  • Ota H, Katanosaka K, Murase S et al (2013) TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness. PLoS ONE 8:e65751. doi:10.1371/journal.pone.0065751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parada CA, Yeh JJ, Reichling DB, Levine JD (2003) Transient attenuation of protein kinase C epsilon can terminate a chronic hyperalgesic state in the rat. Neuroscience 120:219–226

    CAS  PubMed  Google Scholar 

  • Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288

    CAS  PubMed  Google Scholar 

  • Pickar JG, Hill JM, Kaufman MP (1994) Dynamic exercise stimulates group III muscle afferents. J Neurophysiol 71:753–760

    CAS  PubMed  Google Scholar 

  • Prado FC, Araldi D, Vieira AS et al (2013) Neuronal P2X3 receptor activation is essential to the hyperalgesia induced by prostaglandins and sympathomimetic amines released during inflammation. Neuropharmacology 67:252–258. doi:10.1016/j.neuropharm.2012.11.011

    CAS  PubMed  Google Scholar 

  • Prasad M, Fearon IM, Zhang M et al (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol (Lond) 537:667–677

    CAS  PubMed Central  Google Scholar 

  • Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol (Lond) 537:333–345

    CAS  Google Scholar 

  • Radhakrishnan R, Moore SA, Sluka KA (2003) Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 104:567–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reichling DB, Green PG, Levine JD (2013) The fundamental unit of pain is the cell. Pain. doi:10.1016/j.pain.2013.05.037

    Google Scholar 

  • Reichling DB, Levine JD (2009) Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32:611–618. doi:10.1016/j.tins.2009.07.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinöhl J, Hoheisel U, Unger T, Mense S (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neurosci Lett 338:25–28

    PubMed  Google Scholar 

  • Ro JY, Capra NF, Lee J-S et al (2007) Hypertonic saline-induced muscle nociception and c-fos activation are partially mediated by peripheral NMDA receptors. Eur J Pain 11:398–405. doi:10.1016/j.ejpain.2006.05.008

    CAS  PubMed  Google Scholar 

  • Ro JY, Lee J-S, Zhang Y (2009) Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain 144:270–277. doi:10.1016/j.pain.2009.04.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rukwied R, Chizh BA, Lorenz U et al (2007) Potentiation of nociceptive responses to low pH injections in humans by prostaglandin E2. J Pain 8:443–451. doi:10.1016/j.jpain.2006.12.004

    CAS  PubMed  Google Scholar 

  • Sacchetti G, Lampugnani R, Battistini C, Mandelli V (1980) Response of pathological ischaemic muscle pain to analgesics. Br J Clin Pharmacol 9:165–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai J, Obata K, Ozaki N et al (2008) Activation of extracellular signal-regulated protein kinase in sensory neurons after noxious gastric distention and its involvement in acute visceral pain in rats. Gastroenterology 134:1094–1103. doi:10.1053/j.gastro.2008.01.031

    PubMed  Google Scholar 

  • Saltin B, Gagge AP, Stolwijk JA (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25:679–688

    Google Scholar 

  • Schmidt-Wilcke T, Luerding R, Weigand T et al (2007) Striatal grey matter increase in patients suffering from fibromyalgia–a voxel-based morphometry study. Pain 132(Suppl 1):S109–S116. doi:10.1016/j.pain.2007.05.010

    PubMed  Google Scholar 

  • Shah JP, Phillips TM, Danoff JV, Gerber LH (2005) An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol 99:1977–1984. doi:10.1152/japplphysiol.00419.2005

    CAS  PubMed  Google Scholar 

  • Sherwood TW, Frey EN, Askwith CC (2012) Structure and activity of the acid-sensing ion channels. Am J Physiol, Cell Physiol 303:C699–C710. doi:10.1152/ajpcell.00188.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinoda M, Asano M, Omagari D et al (2011) Nerve growth factor contribution via transient receptor potential vanilloid 1 to ectopic orofacial pain. J Neurosci 31:7145–7155. doi:10.1523/JNEUROSCI.0481-11.2011

    CAS  PubMed  Google Scholar 

  • Shinoda M, Ozaki N, Sugiura Y (2008) Involvement of ATP and its receptors on nociception in rat model of masseter muscle pain. Pain 134:148–157. doi:10.1016/j.pain.2007.04.006

    CAS  PubMed  Google Scholar 

  • Skyba DA, King EW, Sluka KA (2002) Effects of NMDA and non-NMDA ionotropic glutamate receptor antagonists on the development and maintenance of hyperalgesia induced by repeated intramuscular injection of acidic saline. Pain 98:69–78

    CAS  PubMed  Google Scholar 

  • Skyba DA, Lisi TL, Sluka KA (2005) Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline. Pain 119:142–149. doi:10.1016/j.pain.2005.09.025

    CAS  PubMed  Google Scholar 

  • Sluka KA, Danielson J, Rasmussen L, DaSilva LF (2012) Exercise-induced pain requires NMDA receptor activation in the medullary raphe nuclei. Med Sci Sports Exerc 44:420–427. doi:10.1249/MSS.0b013e31822f490e

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46

    CAS  PubMed  Google Scholar 

  • Sluka KA, Price MP, Breese NM et al (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239

    CAS  PubMed  Google Scholar 

  • Sluka KA, Rasmussen LA (2010) Fatiguing exercise enhances hyperalgesia to muscle inflammation. Pain 148:188–197. doi:10.1016/j.pain.2009.07.001

    PubMed Central  PubMed  Google Scholar 

  • Spencer NJ, Kerrin A, Singer CA et al (2008) Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience 153:518–534. doi:10.1016/j.neuroscience.2008.02.054

    CAS  PubMed  Google Scholar 

  • Stacey MJ (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105:231–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staud R (2002) Evidence of involvement of central neural mechanisms in generating fibromyalgia pain—Springer. Curr Rheumatol Rep 4(4):299–305

    Google Scholar 

  • Staud R (2007) Treatment of fibromyalgia and its symptoms. Expert Opin Pharmacother 8:1629–1642. doi:10.1517/14656566.8.11.1629

    CAS  PubMed  Google Scholar 

  • Staud R, Nagel S, Robinson ME, Price DD (2009) Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double-blind, placebo-controlled study. Pain 145:96–104. doi:10.1016/j.pain.2009.05.020

    PubMed Central  PubMed  Google Scholar 

  • Strausbaugh HJ, Green PG, Dallman MF, Levine JD (2003) Repeated, non-habituating stress suppresses inflammatory plasma extravasation by a novel, sympathoadrenal dependent mechanism. Eur J Neurosci 17:805–812

    PubMed  Google Scholar 

  • Sun Y, Chai TC (2004) Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171:448–452. doi:10.1097/01.ju.0000099660.46774.3c

    CAS  PubMed  Google Scholar 

  • Svensson P, Cairns BE, Wang K, Arendt-Nielsen L (2003) Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104:241–247

    CAS  PubMed  Google Scholar 

  • Syed N-I-H, Tengah A, Paul A, Kennedy C (2010) Characterisation of P2X receptors expressed in rat pulmonary arteries. Eur J Pharmacol 649:342–348. doi:10.1016/j.ejphar.2010.09.041

    CAS  PubMed  Google Scholar 

  • Taguchi T, Matsuda T, Tamura R et al (2005) Muscular mechanical hyperalgesia revealed by behavioural pain test and c-Fos expression in the spinal dorsal horn after eccentric contraction in rats. J Physiol (Lond) 564:259–268. doi:10.1113/jphysiol.2004.079483

    CAS  Google Scholar 

  • Takahashi K, Taguchi T, Tanaka S, et al (2011) Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neurosci Res 1–9. doi:10.1016/j.neures.2011.04.001

  • Teixeira JM, Oliveira MCG, Nociti FH et al (2010) Involvement of temporomandibular joint P2X3 and P2X2/3 receptors in carrageenan-induced inflammatory hyperalgesia in rats. Eur J Pharmacol 645:79–85. doi:10.1016/j.ejphar.2010.06.008

    CAS  PubMed  Google Scholar 

  • Thompson JM (2012) Exercise in muscle pain disorders. PM R 4:889–893. doi:10.1016/j.pmrj.2012.08.004

    PubMed  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353. doi:10.1152/ajpregu.00454.2004

    CAS  PubMed  Google Scholar 

  • Tillu D, Gebhart G, Sluka K (2007) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 8:422–429

    Google Scholar 

  • Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch 451:143–150. doi:10.1007/s00424-005-1457-8

    CAS  PubMed  Google Scholar 

  • Tsukagoshi M, Goris RC, Funakoshi K (2006) Differential distribution of vanilloid receptors in the primary sensory neurons projecting to the dorsal skin and muscles. Histochem Cell Biol 126:343–352. doi:10.1007/s00418-006-0167-4

    CAS  PubMed  Google Scholar 

  • Uchida MC, Nosaka K, Ugrinowitsch C et al (2009) Effect of bench press exercise intensity on muscle soreness and inflammatory mediators. J Sports Sci 27:499–507. doi:10.1080/02640410802632144

    PubMed  Google Scholar 

  • Urai H, Murase S, Mizumura K (2013) Decreased nerve growth factor upregulation is a mechanism for reduced mechanical hyperalgesia after the second bout of exercise in rats. Scand J Med Sci Sports 23:e96–e101. doi:10.1111/sms.12013

    CAS  PubMed  Google Scholar 

  • Valkeinen H, Häkkinen A, Alen M et al (2008) Physical fitness in postmenopausal women with fibromyalgia. Int J Sports Med 29:408–413. doi:10.1055/s-2007-965818

    CAS  PubMed  Google Scholar 

  • Vázquez-Delgado E, Cascos-Romero J, Gay-Escoda C (2009) Myofascial pain syndrome associated with trigger points: a literature review. (I): Epidemiology, clinical treatment and etiopathogeny. Med Oral Patol Oral Cir Bucal 14:e494–e498

    PubMed  Google Scholar 

  • Verbunt JA, Pernot DHFM, Smeets RJEM (2008) Disability and quality of life in patients with fibromyalgia. Health Qual Life Outcomes 6:8. doi:10.1186/1477-7525-6-8

    PubMed Central  PubMed  Google Scholar 

  • Walder RY, Gautam M, Wilson SP et al (2011) Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 152:2348–2356. doi:10.1016/j.pain.2011.06.027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walder RY, Radhakrishnan R, Loo L et al (2012) TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation. Pain 153:1664–1672. doi:10.1016/j.pain.2012.04.034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walder RY, Rasmussen LA, Rainier JD et al (2010) ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. J Pain 11:210–218. doi:10.1016/j.jpain.2009.07.004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waldmann R (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424. doi:10.1016/S0959-4388(98)80070-6

    CAS  PubMed  Google Scholar 

  • Waldmann R, Bassilana F, de Weille J et al (1997a) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272:20975–20978

    CAS  PubMed  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F et al (1997b) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177. doi:10.1038/386173a0

    CAS  PubMed  Google Scholar 

  • Wang C, Li G-W, Huang L-YM (2007) Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons. Mol Pain 3:22. doi:10.1186/1744-8069-3-22

    PubMed Central  PubMed  Google Scholar 

  • Wang R, Guo W, Ossipov MH et al (2003) Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain. Neuroscience 121:815–824

    CAS  PubMed  Google Scholar 

  • Wang Y, Li G, Yu K et al (2009) Expressions of P2X2 and P2X3 receptors in rat nodose neurons after myocardial ischemia injury. Auton Neurosci 145:71–75. doi:10.1016/j.autneu.2008.11.006

    CAS  PubMed  Google Scholar 

  • Wang YX, Wang J, Wang C et al (2008) Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells. J Membr Biol 223:151–159. doi:10.1007/s00232-008-9121-9

    CAS  PubMed  Google Scholar 

  • Woolf CJ, Safieh-Garabedian B, Ma QP et al (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62:327–331. doi:10.1016/0306-4522(94)90366-2

    CAS  PubMed  Google Scholar 

  • Wu C, Erickson MA, Xu J et al (2009) Expression profile of nerve growth factor after muscle incision in the rat. Anesthesiology 110:140–149. doi:10.1097/ALN.0b013e318190bc84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JX, Xu MY, Miao XR et al (2012) Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain. Eur J Pain 16:1378–1388. doi:10.1002/j.1532-2149.2012.00149.x

    CAS  PubMed  Google Scholar 

  • Wu Z, Yang Q, Crook RJ et al (2013) TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury. Pain. doi:10.1016/j.pain.2013.06.040

    PubMed Central  Google Scholar 

  • Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    CAS  PubMed  Google Scholar 

  • Xing J, Gao Z, Lu J et al (2008) Femoral artery occlusion augments TRPV1-mediated sympathetic responsiveness. Am J Physiol Heart Circ Physiol 295:H1262–H1269. doi:10.1152/ajpheart.00271.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xing J, Lu J, Li J (2011) ASIC3 function and immunolabeling increases in skeletal muscle sensory neurons following femoral artery occlusion. J Physiol (Lond). doi:10.1113/jphysiol.2011.221788

  • Xing J, Lu J, Li J (2009) Contribution of nerve growth factor to augmented TRPV1 responses of muscle sensory neurons by femoral artery occlusion. Am J Physiol Heart Circ Physiol 296:H1380–H1387. doi:10.1152/ajpheart.00063.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu G-Y, Shenoy M, Winston JH et al (2008) P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57:1230–1237. doi:10.1136/gut.2007.134221

    CAS  PubMed  Google Scholar 

  • Yokoyama T, Lisi TL, Moore SA, Sluka KA (2007) Muscle fatigue increases the probability of developing hyperalgesia in mice. J Pain 8:692–699. doi:10.1016/j.jpain.2007.05.008

    PubMed Central  PubMed  Google Scholar 

  • Zagorodnyuk VP, Gibbins IL, Costa M et al (2007) Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol (Lond) 585:147–163. doi:10.1113/jphysiol.2007.140244

    CAS  Google Scholar 

  • Zhang C, Li G, Liang S et al (2008) Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons. Brain Res Bull 75:77–82. doi:10.1016/j.brainresbull.2007.07.031

    CAS  PubMed  Google Scholar 

  • Zhong B, Wang DH (2008) N-oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-reperfusion injury via activation of TRPV1. Am J Physiol Heart Circ Physiol 295:H728–H735. doi:10.1152/ajpheart.00022.2008

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Sluka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gregory, N.S., Sluka, K.A. (2014). Anatomical and Physiological Factors Contributing to Chronic Muscle Pain. In: Taylor, B., Finn, D. (eds) Behavioral Neurobiology of Chronic Pain. Current Topics in Behavioral Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_294

Download citation

Publish with us

Policies and ethics