Skip to main content

Advertisement

Log in

Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common dementia and the trigger of its pathological cascade is widely believed to be the overproduction and accumulation of β-amyloid protein (Aβ) in the affected brain. However, effective AD remedies are still anxiously awaited. Recent evidence suggests that curcumin may be a potential agent for AD treatment. In this study, we used 5×FAD transgenic mice as an AD model to investigate the effects of curcumin on AD. Our results showed that curcumin administration (150 or 300 mg/kg/day, intragastrically, for 60 days) dramatically reduced Aβ production by downregulating BACE1 expression, preventing synaptic degradation, and improving spatial learning and memory impairment of 5×FAD mice. These findings suggest that curcumin is a potential candidate for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thies W, Bleiler L, Alzheimer’s A (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc 9 (2):208–245. doi:10.1016/j.jalz.2013.02.003

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  3. Small DH, Mok SS, Bornstein JC (2001) Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2(8):595–598. doi:10.1038/35086072

    Article  CAS  PubMed  Google Scholar 

  4. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Molecular Brain 4:3. doi:10.1186/1756-6606-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bulloj A, Leal MC, Xu H, Castano EM, Morelli L (2010) Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-beta degrading protease. J Alzheimers Dis JAD 19(1):79–95. doi:10.3233/JAD-2010-1206

    Article  PubMed  Google Scholar 

  6. Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5(2):225–231

    Article  CAS  PubMed  Google Scholar 

  7. Liang K, Yang L, Yin C, Xiao Z, Zhang J, Liu Y, Huang J (2010) Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J Biol Chem 285(2):935–942. doi:10.1074/jbc.M109.051664

    Article  CAS  PubMed  Google Scholar 

  8. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876

    Article  CAS  PubMed  Google Scholar 

  9. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10(3):511–545. doi:10.1089/ars.2007.1769

    Article  CAS  PubMed  Google Scholar 

  10. Ramsewak RS, DeWitt DL, Nair MG (2000) Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 7(4):303–308. doi:10.1016/S0944-7113(00)80048-3

    Article  CAS  PubMed  Google Scholar 

  11. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(1):1–7. doi:10.1055/s-2006-960004

    Article  CAS  PubMed  Google Scholar 

  12. Chandra V, Pandav R, Dodge HH, Johnston JM, Belle SH, DeKosky ST, Ganguli M (2001) Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study. Neurology 57(6):985–989

    Article  CAS  PubMed  Google Scholar 

  13. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75. doi:10.1038/nrn2303

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy MB (2016) Synaptic signaling in learning and memory. Cold Spring Harbor Perspect Biol 8 (2). doi:10.1101/cshperspect.a016824

  15. Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24(8):1029–1046

    Article  CAS  PubMed  Google Scholar 

  16. Scheff SW, Price DA (2001) Alzheimer’s disease-related synapse loss in the cingulate cortex. J Alzheimers Dis JAD 3(5):495–505

    Article  PubMed  Google Scholar 

  17. Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70(5):847–854. doi:10.1016/j.neuron.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordon SL, Leube RE, Cousin MA (2011) Synaptophysin is required for synaptobrevin retrieval during synaptic vesicle endocytosis. J Neurosci 31(39):14032–14036. doi:10.1523/JNEUROSCI.3162-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807. doi:10.1523/JNEUROSCI.3501-06.2007

    Article  CAS  PubMed  Google Scholar 

  20. Evans NA, Facci L, Owen DE, Soden PE, Burbidge SA, Prinjha RK, Richardson JC, Skaper SD (2008) Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J Neurosci Methods 175(1):96–103. doi:10.1016/j.jneumeth.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  21. Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM (2011) Abeta oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol Aging 32(12):2211–2218. doi:10.1016/j.neurobiolaging.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Wilcox KC, Lacor PN, Pitt J, Klein WL (2011) Abeta oligomer-induced synapse degeneration in Alzheimer’s disease. Cell Mol Neurobiol 31(6):939–948. doi:10.1007/s10571-011-9691-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87(1):172–181

    Article  CAS  PubMed  Google Scholar 

  24. Ling Y, Morgan K, Kalsheker N (2003) Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 35(11):1505–1535

    Article  CAS  PubMed  Google Scholar 

  25. Gandy S, Caporaso G, Buxbaum J, Frangione B, Greengard P (1994) APP processing, A beta-amyloidogenesis, and the pathogenesis of Alzheimer’s disease. Neurobiol Aging 15(2):253–256

    Article  CAS  PubMed  Google Scholar 

  26. Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M, Calatayud MT, Blazquez Menes B (2005) APP processing and the APP-KPI domain involvement in the amyloid cascade. Neurodegener Dis 2(6):277–283. doi:10.1159/000092315

    Article  CAS  PubMed  Google Scholar 

  27. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4(3):233–234. doi:10.1038/85064

    Article  CAS  PubMed  Google Scholar 

  28. Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R (2012) Beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem 287(46):38408–38425. doi:10.1074/jbc.M112.415505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo Y, Bolon B, Kahn S et al (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4(3):231–232. doi:10.1038/85059

    Article  CAS  PubMed  Google Scholar 

  30. Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59(9):1381–1389

    Article  PubMed  Google Scholar 

  31. Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786. doi:10.1002/ana.10208

    Article  CAS  PubMed  Google Scholar 

  32. Yang LB, Lindholm K, Yan R et al (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9(1):3–4. doi:10.1038/nm0103-3

    Article  CAS  PubMed  Google Scholar 

  33. Chen CH, Zhou W, Liu S et al (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90. doi:10.1017/S1461145711000149

    Article  CAS  PubMed  Google Scholar 

  34. Mei Z, Yan P, Tan X, Zheng S, Situ B (2015) Transcriptional regulation of BACE1 by NFAT3 leads to enhanced amyloidogenic processing. Neurochem Res 40(4):829–836. doi:10.1007/s11064-015-1533-1

    Article  CAS  PubMed  Google Scholar 

  35. Cho HJ, Jin SM, Youn HD, Huh K, Mook-Jung I (2008) Disrupted intracellular calcium regulates BACE1 gene expression via nuclear factor of activated T cells 1 (NFAT 1) signaling. Aging cell 7(2):137–147. doi:10.1111/j.1474-9726.2007.00360.x

    Article  CAS  PubMed  Google Scholar 

  36. Cho HJ, Kim SK, Jin SM, Hwang EM, Kim YS, Huh K, Mook-Jung I (2007) IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia 55(3):253–262. doi:10.1002/glia.20451

    Article  PubMed  Google Scholar 

  37. Wen Y, Yu WH, Maloney B et al (2008) Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 57(5):680–690. doi:10.1016/j.neuron.2008.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang R, Li JJ, Diao S et al (2013) Metabolic stress modulates Alzheimer’s beta-secretase gene transcription via SIRT1-PPARgamma-PGC-1 in neurons. Cell Metab 17(5):685–694. doi:10.1016/j.cmet.2013.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, Shi SS (2014) Curcumin inhibits TLR2/4-NF-kappaB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation 37(5):1544–1551. doi:10.1007/s10753-014-9881-6

    Article  CAS  PubMed  Google Scholar 

  40. Deng Y, Lu X, Wang L et al (2014) Curcumin inhibits the AKT/NF-kappaB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line. AAPS J 16(4):649–657. doi:10.1208/s12248-014-9605-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kliem C, Merling A, Giaisi M, Kohler R, Krammer PH, Li-Weber M (2012) Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. J Biol Chem 287(13):10200–10209. doi:10.1074/jbc.M111.318733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rajasingh J, Raikwar HP, Muthian G, Johnson C, Bright JJ (2006) Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 340(2):359–368. doi:10.1016/j.bbrc.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  43. Bharti AC, Donato N, Aggarwal BB (2003) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171(7):3863–3871

    Article  CAS  PubMed  Google Scholar 

  44. Liu ZJ, Liu HQ, Xiao C, Fan HZ, Huang Q, Liu YH, Wang Y (2014) Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-gamma function. J Neurosci Res 92(11):1549–1559. doi:10.1002/jnr.23438

    Article  CAS  PubMed  Google Scholar 

  45. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 98(10):5815–5820. doi:10.1073/pnas.081612998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buxbaum JD, Koo EH, Greengard P (1993) Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide. Proc Natl Acad Sci U S A 90(19):9195–9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blobel CP (1997) Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell 90(4):589–592

    Article  CAS  PubMed  Google Scholar 

  48. Hooper NM, Turner AJ (2002) The search for alpha-secretase and its potential as a therapeutic approach to Alzheimer’s disease. Curr Med Chem 9(11):1107–1119

    Article  CAS  PubMed  Google Scholar 

  49. Buxbaum JD, Liu KN, Luo Y et al (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. The Journal of biological chemistry 273(43):27765–27767

    Article  CAS  PubMed  Google Scholar 

  50. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96(7):3922–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marcinkiewicz M, Seidah NG (2000) Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J Neurochem 75(5):2133–2143

    Article  CAS  PubMed  Google Scholar 

  52. Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M (2002) Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61(10):849–856

    Article  CAS  PubMed  Google Scholar 

  53. Miners JS, Baig S, Tayler H, Kehoe PG, Love S (2009) Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J Neuropathol Exp Neurol 68(8):902–914. doi:10.1097/NEN.0b013e3181afe475

    Article  CAS  PubMed  Google Scholar 

  54. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654. doi:10.1016/j.neurobiolaging.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  55. Hellstrom-Lindahl E, Ravid R, Nordberg A (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with A beta levels. Neurobiol Aging 29(2):210–221. doi:10.1016/j.neurobiolaging.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  56. Wang P, Wang H, Li R, Li Y, Ren Y, Zhu Z, Sun H, Yang J, Sun J (2011) Effect of curcumin on expression of Abeta42 and Abeta-degrading enzyme NEP in APPswe/PS1dE9 double transgenic mice. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chinese Mater Med 36 (8):1079–1082

Download references

Acknowledgments

We thank Prof. Mary Jo LaDu (Department of Anatomy and Cell Biology, University of Illinois at Chicago, USA) for kindly providing the 5×FAD mice. These studies were funded by the National Natural Science Foundation of China to Prof. Xiao-chun Chen (No. 91232709, 811171216, 81110555) and Prof. Jing Zhang (No. 81401149) and the National and Fujian Province’s Key Clinical Specialty Discipline Construction Programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Xiaochun Chen.

Ethics declarations

Conflict of Interest

The authors have no conflict of interests to declare.

Additional information

Kunmu Zheng and Xiaoman Dai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Dai, X., Xiao, N. et al. Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice. Mol Neurobiol 54, 1967–1977 (2017). https://doi.org/10.1007/s12035-016-9802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9802-9

Keywords

Navigation