Skip to main content
Log in

Characterization of Novel Family IV Esterase and Family I.3 Lipase from an Oil-Polluted Mud Flat Metagenome

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Two genes encoding lipolytic enzymes were isolated from a metagenomic library constructed from oil-polluted mud flats. An esterase gene, est3K, encoded a protein of 299 amino acids (ca. 32,364 Da). Est3K was a family IV esterase with typical motifs, HGGG, and HGF. Although est3K showed high identity to many genes with no information on their enzymatic properties, Est3K showed the highest identity (36 %) to SBLip5.1 from forest soil metagenome when compared to the enzymes with reported properties. A lipase gene, lip3K, encoded a protein of 616 amino acids (ca. 64,408 Da). Lip3K belonged to family I.3 lipase with a C-terminal secretion signal and showed the highest identity (93 %) to the lipase of Pseudomonas sp. MIS38. The presence of several newly identified conserved motifs in Est3K and Lip3K are suggested. Both Est3K and Lip3K exerted their maximal activity at pH 9.0 and 50 °C. The activity of Lip3K was significantly increased by the presence of 30 % methanol. The ability of the enzymes to retain activities in the presence of methanol and the substrates may offer a merit to the biotechnological applications of the enzymes such as transesterification. The activity and the thermostability of Lip3K were increased by Ca2+. Est3K and Lip3K preferred p-nitrophenyl butyrate (C4) and octanoate (C8), respectively, as the substrate and acted independently on the substrates with no synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.

    Article  CAS  Google Scholar 

  2. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

  3. Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: Classification and properties. Biochemical Journal, 343, 177–183.

    Article  CAS  Google Scholar 

  4. Charbonneau, D. M., & Beauregard, M. (2013). Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: Distinctive patterns within the new bacterial lipolytic enzyme family XV. PLoS One, 8, e76675.

    Article  CAS  Google Scholar 

  5. Baltrus, D. A., Nishimura, M. T., Romanchuk, A., Chang, J. H., Mukhtar, M. S., Cherkis, K., et al. (2011). Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathogens, 7, e1002132.

    Article  CAS  Google Scholar 

  6. Dudnik, A., & Dudler, R. (2013). Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat. Standards Genomic Sciences, 8, 420–429.

    Article  Google Scholar 

  7. Nacke, H., Will, C., Herzog, S., Nowka, B., Engelhaupt, M., & Daniel, R. (2011). Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiology Ecology, 78, 188–201.

    Article  CAS  Google Scholar 

  8. Rodríguez-Palenzuela, P., Matas, I. M., Murillo, J., López-Solanilla, E., Bardaji, L., Pérez-Martínez, I., et al. (2010). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environmental Microbiology, 12, 1604–1620.

    Google Scholar 

  9. Bassegoda, A., Fillat, A., Pastor, F. I., & Diaz, P. (2013). Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)X-oxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Applied Microbiology and Biotechnology, 97, 8559–8568.

    Article  CAS  Google Scholar 

  10. Biver, S., & Vandenbol, M. (2013). Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. Journal of Industrial Microbiology and Biotechnology, 40, 191–200.

    Article  CAS  Google Scholar 

  11. López, G., Chow, J., Bongen, P., Lauinger, B., Pietruszka, J., Streit, W. R., & Baena, S. (2014). A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Applied Microbiology and Biotechnology, 98, 8603–8616.

    Article  Google Scholar 

  12. Handelsman, J. (2004). Metagenomics application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68, 669–685.

    Article  CAS  Google Scholar 

  13. Fang, Z., Li, J., Wang, Q., Fang, W., Peng, H., Zhang, X., & Xiao, Y. (2014). A novel esterase from a marine metagenomic library exhibiting salt tolerance ability. Journal of Microbiology and Biotechnology, 24, 771–780.

    CAS  Google Scholar 

  14. Chow, J., Kovacic, F., Dall Antonia, Y., Krauss, U., Fersini, F., Schmeisser, C., et al. (2012). The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One, 7, e47665.

    Article  CAS  Google Scholar 

  15. Bunterngsook, B., Kanokratana, P., Thongaram, T., Tanapongpipat, S., Uengwetwanit, T., Rachdawong, S., et al. (2010). Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome. Bioscience, Biotechnology, and Biochemistry, 74, 1848–1854.

    Article  CAS  Google Scholar 

  16. Kim, Y. H., Kwon, E. J., Kim, S. K., Jeong, Y. S., Kim, J., Yun, H. D., & Kim, H. (2010). Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochemical and Biophysical Research Communications, 393, 45–49.

    Article  CAS  Google Scholar 

  17. Bendsten, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptide: SignalP 3.0. Journal of Molecular Biology, 340, 783–795.

    Article  Google Scholar 

  18. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., et al. (2008). The Pfam protein families database. Nucleic Acids Research Database Issue, 36, D281–D288.

    Article  CAS  Google Scholar 

  19. Jeong, Y. S., Na, H. B., Kim, S. K., Kim, Y. H., Kwon, E. J., Kim, J., et al. (2012). Characterization of xyn10J, a novel family 10 xylanase from a compost metagenomic library. Applied Biochemistry and Biotechnology, 166, 1328–1339.

    Article  CAS  Google Scholar 

  20. Lee, K. Y., Kim, J. H., & Kim, H. (1996). Isolation and characterization of Bacillus sp. KD1014 producing carboxymethyl-cellulase. Journal of Microbiology, 34, 305–310.

    CAS  Google Scholar 

  21. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Choo, D. W., Kurihara, T., Suzuki, T., Soda, K., & Esaki, N. (1998). A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1: Gene cloning and enzyme purification and characterization. Applied and Environment Microbiology, 64, 486–491.

    CAS  Google Scholar 

  24. Hong, K. S., Lim, H. K., Chung, E. J., Park, E. J., Lee, M. H., Kim, J. C., et al. (2007). Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. Journal of Microbiology and Biotechnology, 17, 1655–1660.

    CAS  Google Scholar 

  25. Virk, A. P., Sharma, P., & Capalash, N. (2011). A new esterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. Journal of Microbiology and Biotechnology, 21, 667–674.

    Article  CAS  Google Scholar 

  26. Amada, K., Haruki, M., Imanaka, T., Morikawa, M., & Kanaya, S. (2000). Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. Biochimica et Biophysica Acta, 1478, 201–210.

    Article  CAS  Google Scholar 

  27. Jiang, Z., Zheng, Y., Luo, Y., Wang, G., Wang, H., Ma, Y., & Wei, D. (2005). Cloning and expression of a novel lipase gene from Pseudomonas fluorescens B52. Molecular Biotechnology, 31, 95–101.

    Article  CAS  Google Scholar 

  28. Panizza, P., Syfantou, N., Pastor, F. I., Rodríguez, S., & Díaz, P. (2013). Acidic lipase Lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. Journal of Applied Microbiology, 114, 722–732.

    Article  CAS  Google Scholar 

  29. Johnson, L. A., Beacham, I. R., MacRae, I. C., & Free, M. L. (1992). Degradation of triglycerides by a pseudomonad isolated from milk: Molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Applied and Environment Microbiology, 58, 1776–1779.

    CAS  Google Scholar 

  30. Luo, Y., Zheng, Y., Jiang, Z., Ma, Y., & Wei, D. (2006). A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Applied Microbiology and Biotechnology, 73, 349–355.

    Article  CAS  Google Scholar 

  31. Tan, Y., & Miller, K. J. (1992). Cloning, expression, and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52. Applied and Environment Microbiology, 58, 1402–1407.

    CAS  Google Scholar 

  32. Angkawidjaja, C., & Kanaya, S. (2006). Family I.3 lipase: Bacterial lipases secreted by the type 1 secretion system. Cellular and Molecular Life Sciences, 63, 2804–2817.

    Article  CAS  Google Scholar 

  33. Kuwahara, K., Angkawidjaja, C., Koga, Y., Takano, K., & Kanaya, S. (2011). Importance of an extreme C-terminal motif of a family I.3 lipase for stability. Protein Engineering, Design & Selection, 24, 411–418.

    Article  CAS  Google Scholar 

  34. Yao, H., Yu, S., Zhang, L., Zuo, K., Ling, H., Zhang, F., & Tang, K. (2008). Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Molecular Biotechnology, 38, 99–107.

    Article  CAS  Google Scholar 

  35. Kuwahara, K., Angkawidjaja, C., Matsumura, H., Koga, Y., Takano, K., & Kanaya, S. (2008). Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability. Protein Engineering, Design & Selection, 21, 737–744.

    Article  CAS  Google Scholar 

  36. Kojima, Y., Kobayashi, M., & Shimizu, S. (2003). A novel lipase from Pseudomonas fluorescens HU380: Gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. Journal of Bioscience and Bioengineering, 96, 242–249.

    Article  CAS  Google Scholar 

  37. Beven, C. A., Dieckelmann, M., & Beacham, I. R. (2001). A strain of Pseudomonas fluorescens with two lipase-encoding genes, one of which possibly encodes cytoplasmic lipolytic activity. Journal of Applied Microbiology, 90, 979–987.

    Article  CAS  Google Scholar 

  38. Zhang, J. W., & Zeng, R. Y. (2008). Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Marine Biotechnology, 10, 612–621.

    Article  CAS  Google Scholar 

  39. Yang, J., Zhang, B., & Yan, Y. (2008). Cloning and expression of Pseudomonas fluorescens 26–2 lipase gene in Pichia pastoris and characterizing for transesterification. Applied Biochemistry and Biotechnology, 159, 355–365.

    Article  Google Scholar 

  40. Sulong, M. R., Abdul Rahman, R. N., Salleh, A. B., & Basri, M. (2006). A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular expression of a novel OST-lipase gene. Protein Expression and Purification, 49, 190–195.

    Article  CAS  Google Scholar 

  41. Santambrogio, C., Sasso, F., Natalello, A., Brocca, S., Grandori, R., Doglia, S. M., & Lotti, M. (2013). Effects of methanol on a methanol-tolerant bacterial lipase. Applied Microbiology and Biotechnology, 97, 8609–8618.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Environment of the Republic of Korea Grant No. 2008-05001-0033-0) and partially by the Suncheon Research Center for Natural Medicines, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Jeong, Y.S., Jung, W.K. et al. Characterization of Novel Family IV Esterase and Family I.3 Lipase from an Oil-Polluted Mud Flat Metagenome. Mol Biotechnol 57, 781–792 (2015). https://doi.org/10.1007/s12033-015-9871-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9871-4

Keywords

Navigation