Skip to main content

Advertisement

Log in

Comparison of Lentiviral Packaging Mixes and Producer Cell Lines for RNAi Applications

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lentiviral transduction is a highly efficient DNA delivery method for RNA interference applications. However, obtaining high lentiviral titers of shRNA and miRNA encoding vectors is challenging, since shRNA and miRNA cassettes have been shown to reduce lentiviral titers. In this study, we compare four commercially available packaging mixes and two producer cell lines in order to optimize lentiviral production for gene silencing experiments. Lentiviral vectors encoding a miRNA sequence and emerald green fluorescence protein were co-transfected with ViraPower™, Lenti-X™ HTX, MISSION® Lentiviral or Trans-Lentiviral™ packaging mix in HEK-293T or 293FT cells. After transducing HeLa cells with virus-containing supernatant, lentiviral titers were determined by flow cytomerty. In both cell lines, the highest lentiviral titer was obtained with MISSION® Lentiviral packaging mix, followed by ViraPower™, Lenti-X™ HTX, and Trans-Lentiviral™. On average, HEK-293T cells produced 6.2-fold higher lentiviral titers than 293FT cells (p < 0.001). With the combination of MISSION® Lentiviral packaging mix and HEK-293T cells, an up to 48.5-fold higher lentiviral titer was reached compared to other packaging mixes and producer cell lines. The optimized selection of packaging mix and cell line described in this work should facilitate the production of high-titer lentiviruses for gene silencing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cao, F., Xie, X., Gollan, T., Zhao, L., Narsinh, K., Lee, R. J., & Wu, J. C. (2010). Comparison of gene-transfer efficiency in human embryonic stem cells. Molecular imaging and biology. MIB, 12, 15–24.

    Google Scholar 

  2. Li, G. B., & Lu, G. X. (2009). Gene delivery efficiency in bone marrow-derived dendritic cells: Comparison of four methods and optimization for lentivirus transduction. Molecular Biotechnology, 43, 250–256.

    Article  CAS  Google Scholar 

  3. Follenzi, A., & Naldini, L. (2002). Generation of HIV-1 derived lentiviral vectors. Methods in Enzymology, 346, 454–465.

    Article  CAS  Google Scholar 

  4. Baekelandt, V., Claeys, A., Eggermont, K., Lauwers, E., De Strooper, B., Nuttin, B., & Debyser, Z. (2002). Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Human Gene Therapy, 13, 841–853.

    Article  CAS  Google Scholar 

  5. Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., & Gijsbers, R. (2006). Comparison of lentiviral vector titration methods. BMC Biotechnology, 6, 34.

    Article  Google Scholar 

  6. Bartlett, D. W., & Davis, M. E. (2006). Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Research, 34, 322–333.

    Article  CAS  Google Scholar 

  7. Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., & Aebischer, P. (2002). Lentiviral-mediated RNA interference. Human Gene Therapy, 13, 2197–2201.

    Article  CAS  Google Scholar 

  8. Mayoral, R. J., & Monticelli, S. (2010). Stable overexpression of miRNAs in bone marrow-derived murine mast cells using lentiviral expression vectors. Methods in Molecular Biology, 667, 205–214.

    Article  CAS  Google Scholar 

  9. Liu, Y. P., Vink, M. A., Westerink, J. T., Ramirez de Arellano, E., Konstantinova, P., Ter Brake, O., & Berkhout, B. (2010). Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA, 16, 1328–1339.

    Article  CAS  Google Scholar 

  10. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051–4060.

    Article  CAS  Google Scholar 

  11. Bohnsack, M. T., Czaplinski, K., & Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10, 185–191.

    Article  CAS  Google Scholar 

  12. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.

    Article  CAS  Google Scholar 

  13. Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17, 3011–3016.

    Article  CAS  Google Scholar 

  14. Chapman, E. J., & Carrington, J. C. (2007). Specialization and evolution of endogenous small RNA pathways. Nature Reviews Genetics, 8, 884–896.

    Article  CAS  Google Scholar 

  15. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    Article  CAS  Google Scholar 

  16. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.

    Article  CAS  Google Scholar 

  17. Poluri, A., & Sutton, R. E. (2008). Titers of HIV-based vectors encoding shRNAs are reduced by a dicer-dependent mechanism. Molecular Therapy, 16, 378–386.

    Article  CAS  Google Scholar 

  18. Higashimoto, T., Urbinati, F., Perumbeti, A., Jiang, G., Zarzuela, A., Chang, L. J., et al. (2007). The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Therapy, 14, 1298–1304.

    Article  CAS  Google Scholar 

  19. Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., & Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell, 101, 173–185.

    Article  CAS  Google Scholar 

  20. Shen, P. C., Lu, C. S., Shiau, A. L., Lee, C. H., Jou, I. M., & Hsieh, J. L. (2013). Lentiviral small hairpin RNA knockdown of macrophage inflammatory protein-1 gamma ameliorates experimentally induced osteoarthritis in mice. Human Gene Therapy, 24, 871–882.

    Article  CAS  Google Scholar 

  21. Torrisani, J., Bournet, B., du Rieu, M. C., Bouisson, M., Souque, A., Escourrou, J., et al. (2009). let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Human Gene Therapy, 20, 831–844.

    Article  CAS  Google Scholar 

  22. Sindhu, A., Arora, P., & Chaudhury, A. (2012). Illuminating the gateway of gene silencing: Perspective of RNA interference technology in clinical therapeutics. Molecular Biotechnology, 51, 289–302.

    Article  CAS  Google Scholar 

  23. Singh, N. K., Meshram, C. D., Sonwane, A. A., Dahiya, S. S., Pawar, S. S., Chaturvedi, V. K., et al. (2014). Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector. Molecular Biotechnology, 56, 91–101.

    Article  CAS  Google Scholar 

  24. Feeley, B. T., Conduah, A. H., Sugiyama, O., Krenek, L., Chen, I. S., & Lieberman, J. R. (2006). In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. Journal of Orthopaedic Research, 24, 1709–1721.

    Article  CAS  Google Scholar 

  25. Logan, A. C., Nightingale, S. J., Haas, D. L., Cho, G. J., Pepper, K. A., & Kohn, D. B. (2004). Factors influencing the titer and infectivity of lentiviral vectors. Human Gene Therapy, 15, 976–988.

    Article  CAS  Google Scholar 

  26. Karolewski, B. A., Watson, D. J., Parente, M. K., & Wolfe, J. H. (2003). Comparison of transfection conditions for a lentivirus vector produced in large volumes. Human Gene Therapy, 14, 1287–1296.

    Article  CAS  Google Scholar 

  27. Cribbs, A. P., Kennedy, A., Gregory, B., & Brennan, F. M. (2013). Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnology, 13, 98.

    Article  CAS  Google Scholar 

  28. Hewinson, J., Paton, J. F., & Kasparov, S. (2013). Viral gene delivery: Optimized protocol for production of high titer lentiviral vectors. Methods in Molecular Biology, 998, 65–75.

    Article  CAS  Google Scholar 

  29. Chen, Q., Zhu, T., Jones, G., Zhang, J., & Sun, Y. (2013). First knockdown gene expression in bat (Hipposideros armiger) brain mediated by lentivirus. Molecular Biotechnology, 54, 564–571.

    Article  CAS  Google Scholar 

  30. Denning, W., Das, S., Guo, S., Xu, J., Kappes, J. C., & Hel, Z. (2013). Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations. Molecular Biotechnology, 53, 308–314.

    Article  CAS  Google Scholar 

  31. Liu, Y., Zhou, J., Pan, J. A., Mabiala, P. & Guo, D. (2014). A novel approach to block HIV-1 coreceptor CXCR4 in non-toxic manner. Molecular Biotechnology, 56, 890–902.

  32. Madonna, R., Bolli, R., Rokosh, G., & De Caterina, R. (2013). Long-term engraftment and angiogenic properties of lentivirally transduced adipose tissue-derived stromal cells. Molecular Biotechnology, 54, 13–24.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Albrecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albrecht, C., Hosiner, S., Tichy, B. et al. Comparison of Lentiviral Packaging Mixes and Producer Cell Lines for RNAi Applications. Mol Biotechnol 57, 499–505 (2015). https://doi.org/10.1007/s12033-015-9843-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9843-8

Keywords

Navigation