Skip to main content

Stable Overexpression of miRNAs in Bone Marrow-Derived Murine Mast Cells Using Lentiviral Expression Vectors

  • Protocol
  • First Online:
MicroRNAs and the Immune System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 667))

Abstract

MicroRNAs (miRNAs) constitute a class of molecules regulating gene expression in many different cell types, including cells of the mammalian immune system. Indeed, changes in miRNA expression patterns have been implicated in various physiological and pathological processes. Mast cells (MCs) are hematopoietic cells that originate in the bone marrow and migrate into the tissues, where they mature and reside. They have an important immunoregulatory and effector role in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses. An effective way to explore the functions of miRNAs in murine MCs includes the modification of miRNA expression in primary bone marrow-derived mast cells (BMMCs), followed by the analysis of the phenotypic consequences of such perturbation. In this chapter, we describe how to differentiate BMMCs and transduce them with lentiviruses. As an example, we expressed miR-221 and miR-222, which showed stable expression in BMMCs and acted as post-transcriptional regulators of c-Kit expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vliagoftis H, Befus AD. Mast cells at mucosal frontiers. Curr Mol Med 2005;5:573–89.

    Article  PubMed  CAS  Google Scholar 

  2. Bingham CO, Austen KF. Mast-cell responses in the development of asthma. J Allergy Clin Immunol 2000;105:S527–34.

    Article  PubMed  CAS  Google Scholar 

  3. Robbie-Ryan M, Brown M. The role of mast cells in allergy and autoimmunity. Curr Opin Immunol 2002;14:728–33.

    Article  PubMed  CAS  Google Scholar 

  4. Secor VH, Secor WE, Gutekunst CA, Brown MA. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 2000;191:813–22.

    Article  PubMed  CAS  Google Scholar 

  5. Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 2002;297:1689–92.

    Article  PubMed  CAS  Google Scholar 

  6. Sun J, Sukhova GK, Wolters PJ, et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 2007;13:719–24.

    Article  PubMed  CAS  Google Scholar 

  7. Sun J, Sukhova GK, Yang M, et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 2007;117:3359–68.

    Article  PubMed  CAS  Google Scholar 

  8. Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999;13:1382–97.

    Article  PubMed  CAS  Google Scholar 

  9. Liu J, Divoux A, Sun J, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 2009; 15(8):940–45.

    Article  PubMed  CAS  Google Scholar 

  10. Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol 2004;4:787–99.

    Article  PubMed  CAS  Google Scholar 

  11. Malaviya R, Georges A. Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin Rev Allergy Immunol 2002;22:189–204.

    Article  PubMed  CAS  Google Scholar 

  12. Akin C, Metcalfe DD. Systemic mastocytosis. Annu Rev Med 2004;55:419–32.

    Article  PubMed  CAS  Google Scholar 

  13. Ambros V. The functions of animal microRNAs. Nature 2004;431:343–9.

    Article  Google Scholar 

  14. Baulcombe D. RNA silencing in plants. Nature 2004;431:356–63

    Article  PubMed  CAS  Google Scholar 

  15. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5(7):522–31.

    Article  PubMed  CAS  Google Scholar 

  16. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008;455:58–63.

    Article  PubMed  CAS  Google Scholar 

  17. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008;455:64–71.

    Article  PubMed  CAS  Google Scholar 

  18. Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005;6(8);R71.

    Article  PubMed  Google Scholar 

  19. Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S. MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 2009;182(1):433–45.

    PubMed  CAS  Google Scholar 

  20. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000;25(2):217–22.

    Article  PubMed  CAS  Google Scholar 

  21. Van den Driessche T, Thorrez L, Naldini L, et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002;100(3):813–22.

    Article  Google Scholar 

  22. Zufferey R, Dull T, Mandel RJ, et al.Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72(12):9873–80.

    PubMed  CAS  Google Scholar 

  23. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999;283:682–6.

    Article  PubMed  CAS  Google Scholar 

  24. Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002;99(4):2140–5.

    Article  PubMed  CAS  Google Scholar 

  25. Ricci-Vitiani L, Pedini F, Mollinari C, et al. Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 2004;200:1257–66.

    Article  PubMed  CAS  Google Scholar 

  26. Bernasconi R, Pertel T, Luban J, Molinari M. A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum: inhibiting secretion of misfolded protein conformers and enhancing their disposal. J Biol Chem 2008;283(24):16446–54.

    Article  PubMed  CAS  Google Scholar 

  27. Mekori YA, Oh CK, Metcalfe DD. IL-3-dependent murine mast cells undergo apoptosis on removal of IL-3. Prevention of apoptosis by c-kit ligand. J Immunol 1993;151(7):3775–84.

    PubMed  CAS  Google Scholar 

  28. Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92:7297–301.

    Article  PubMed  CAS  Google Scholar 

  29. Sonawane ND, Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003; 278:44826–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Thomas Pertel and Dr. Desiree Bonci for the pAPM and TWEEN lentiviral vectors, respectively. RJM is the recipient of a pre-doctoral fellowship from the San Raffaele University, Milan, Italy. This work is supported in part by a Ceresio Foundation fellowship and a Swiss National Science Foundation grant to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Monticelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mayoral, R.J., Monticelli, S. (2010). Stable Overexpression of miRNAs in Bone Marrow-Derived Murine Mast Cells Using Lentiviral Expression Vectors. In: Monticelli, S. (eds) MicroRNAs and the Immune System. Methods in Molecular Biology, vol 667. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-811-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-811-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-810-2

  • Online ISBN: 978-1-60761-811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics