Skip to main content
Log in

Basic Leucine Zipper Family in Barley: Genome-Wide Characterization of Members and Expression Analysis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aa:

Amino acids

ABA:

Abscisic acid

ABF:

ABRE-binding factors

ABRE:

ABA-responsive elements

AREB:

ABRE-binding proteins

bZIP:

Basic leucine zipper

CV:

Coefficient of variation

DRE:

Dehydration-responsive element

IBSC:

International barley sequencing consortium

Leu:

Leucine

MLS:

Mean of log-signal values

nt:

Nucleotide

ORF:

Open reading frame

P0:

Phase 0

P2:

Phase 2

TF:

Transcription factor

uATG:

Upstream ATG

uORF:

Upstream ORF

UTR:

Untranslated region

References

  1. Cowell, I. G., Skinner, A., & Hurst, H. C. (1992). Transcriptional repression by a novel member of the bZIP family of transcription factors. Molecular and Cellular Biology, 12(7), 3070–3077.

    CAS  Google Scholar 

  2. Ryu, T., et al. (2007). bZIPDB: A database of regulatory information for human bZIP transcription factors. BMC Genomics, 8, 136.

    Article  Google Scholar 

  3. Udvardi, M. K., et al. (2007). Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology, 144(2), 538–549.

    Article  CAS  Google Scholar 

  4. Corrêa, L. G. G., et al. (2008). The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS ONE, 3(8), e2944.

    Article  Google Scholar 

  5. Nijhawan, A., et al. (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 146(2), 333–350.

    Article  CAS  Google Scholar 

  6. Landschulz, W. H., Johnson, P. F., & McKnight, S. L. (1988). The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, 240(4860), 1759–1764.

    Article  CAS  Google Scholar 

  7. Ellenberger, T. E., et al. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell, 71(7), 1223–1237.

    Article  CAS  Google Scholar 

  8. Hurst, H. C. (1995). Transcription factors 1: bZIP proteins. Protein Profile, 2(2), 101–168.

    CAS  Google Scholar 

  9. Izawa, T., Foster, R., & Chua, N. H. (1993). Plant bZIP protein DNA binding specificity. Journal of Molecular Biology, 230(4), 1131–1144.

    Article  CAS  Google Scholar 

  10. Foster, R., Izawa, T., & Chua, N. H. (1994). Plant bZIP proteins gather at ACGT elements. FASEB J, 8(2), 192–200.

    CAS  Google Scholar 

  11. Fassler, J., et al. (2002). B-ZIP proteins encoded by the Drosophila genome: Evaluation of potential dimerization partners. Genome Research, 12(8), 1190–1200.

    Article  CAS  Google Scholar 

  12. Vinson, C., et al. (2002). Classification of human B-ZIP proteins based on dimerization properties. Molecular and Cellular Biology, 22(18), 6321–6335.

    Article  CAS  Google Scholar 

  13. Jakoby, M., et al. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7(3), 106–111.

    Article  CAS  Google Scholar 

  14. Wang, J., et al. (2011). Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. Journal of Integrative Plant Biology, 53(3), 212–231.

    Article  CAS  Google Scholar 

  15. Liao, Y., et al. (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 228(2), 225–240.

    Article  CAS  Google Scholar 

  16. Wei, K., et al. (2012). Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 19(6), 463–476.

    Article  CAS  Google Scholar 

  17. Lara, P., et al. (2003). Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. Journal of Biological Chemistry, 278(23), 21003–21011.

    Article  CAS  Google Scholar 

  18. Uno, Y., et al. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11632–11637.

    Article  CAS  Google Scholar 

  19. Kim, S. Y. (2006). The role of ABF family bZIP class transcription factors in stress response. Physiologia Plantarum, 126(4), 519–527.

    CAS  Google Scholar 

  20. Kim, S. Y., et al. (2002). Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiology, 130(2), 688–697.

    Article  CAS  Google Scholar 

  21. Casaretto, J., & Ho, T.-H. D. (2003). The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. The Plant Cell Online, 15(1), 271–284.

    Article  CAS  Google Scholar 

  22. Choi, H., et al. (2000). ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry, 275(3), 1723–1730.

    Article  CAS  Google Scholar 

  23. Shobbar, Z. S., et al. (2008). Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots. New Phytologist, 178(1), 68–79.

    Article  CAS  Google Scholar 

  24. Kobayashi, F., et al. (2008). Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany, 59(4), 891–905.

    Article  CAS  Google Scholar 

  25. Mayer, K. F., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature, 491(7426), 711–716.

    CAS  Google Scholar 

  26. Zhang, H., et al. (2011). PlantTFDB 2.0: Update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research, 39(suppl 1), D1114–D1117.

    Article  CAS  Google Scholar 

  27. Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Computational Biology, 7(10), e1002195.

    Article  CAS  Google Scholar 

  28. Tamura, K., et al. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  Google Scholar 

  29. Grillo, G., et al. (2010). UTRdb and UTRsite (RELEASE 2010): A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Research, 38(suppl 1), D75–D80.

    Article  CAS  Google Scholar 

  30. Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research, 39(suppl 2), W155–W159.

    Article  CAS  Google Scholar 

  31. Chang, W.-C., et al. (2008). PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 9(1), 561.

    Article  Google Scholar 

  32. Casaretto, J. A., & Ho, T.-H. D. (2005). Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Molecular Biology, 57(1), 21–34.

    Article  CAS  Google Scholar 

  33. Xiang, Y., et al. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 148(4), 1938–1952.

    Article  CAS  Google Scholar 

  34. Lu, G., et al. (2009). Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229(3), 605–615.

    Article  CAS  Google Scholar 

  35. Hossain, M. A., et al. (2010). The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology, 167(17), 1512–1520.

    Article  CAS  Google Scholar 

  36. Katagiri, F., Lam, E., & Chua, N.-H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340(6236), 727–730.

    Article  CAS  Google Scholar 

  37. Schmidt, R. J., et al. (1992). Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. The Plant Cell Online, 4(6), 689–700.

    Article  CAS  Google Scholar 

  38. Nakase, M., et al. (1997). Characterization of a novel rice bZIP protein which binds to the α-globulin promoter. Plant Molecular Biology, 33(3), 513–522.

    Article  CAS  Google Scholar 

  39. Liu, C., Wu, Y., & Wang, X. (2012). bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice. Planta, 235(6), 1157–1169.

    Article  CAS  Google Scholar 

  40. Singh, K. B., Foley, R. C., & Oñate-Sánchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5(5), 430–436.

    Article  CAS  Google Scholar 

  41. Després, C., et al. (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. The Plant Cell Online, 12(2), 279–290.

    Article  Google Scholar 

  42. Zhou, J.-M., et al. (2000). NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular Plant-Microbe Interactions, 13(2), 191–202.

    Article  CAS  Google Scholar 

  43. Xiang, C., Miao, Z., & Lam, E. (1997). DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Molecular Biology, 34(3), 403–415.

    Article  CAS  Google Scholar 

  44. Weisshaar, B., et al. (1991). Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO Journal, 10(7), 1777.

    CAS  Google Scholar 

  45. Schindler, U., et al. (1992). Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO Journal, 11(4), 1261–1273.

    CAS  Google Scholar 

  46. Ang, L.-H., et al. (1998). Molecular Interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Molecular Cell, 1(2), 213–222.

    Article  CAS  Google Scholar 

  47. Osterlund, M. T., et al. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 405(6785), 462–466.

    Article  CAS  Google Scholar 

  48. Fukazawa, J., et al. (2000). Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 12(6), 901–915.

    Article  CAS  Google Scholar 

  49. Yin, Y., et al. (1997). RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO Journal, 16(17), 5247–5259.

    Article  CAS  Google Scholar 

  50. Ringli, C., & Keller, B. (1998). Specific interaction of the tomato bZIP transcription factor VSF-1 with a non-palindromic DNA sequence that controls vascular gene expression. Plant Molecular Biology, 37(6), 977–988.

    Article  CAS  Google Scholar 

  51. Fukazawa, J., et al. (2000). Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. The Plant Cell Online, 12(6), 901–915.

    Article  CAS  Google Scholar 

  52. Martínez-García, J. F., et al. (1998). Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors. The Plant Journal, 13(4), 489–505.

    Article  Google Scholar 

  53. Chen, H., et al. (2012). Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science, 193, 8–17.

    Article  Google Scholar 

  54. Chatterjee, S., & Pal, J. K. (2009). Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biology of the Cell, 101(5), 251–262.

    Article  CAS  Google Scholar 

  55. Rahmani, F., et al. (2009). Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiology, 150(3), 1356–1367.

    Article  CAS  Google Scholar 

  56. Dever, T. E. (2002). Gene-specific regulation by general translation factors. Cell, 108(4), 545–556.

    Article  CAS  Google Scholar 

  57. Medenbach, J., Seiler, M., & Hentze, M. W. (2011). Translational control via protein-regulated upstream open reading frames. Cell, 145(6), 902–913.

    Article  CAS  Google Scholar 

  58. Mignone, F., et al. (2002). Untranslated regions of mRNAs. Genome Biology, 3(3), 1–10.

    Article  Google Scholar 

  59. Churbanov, A., et al. (2005). Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Research, 33(17), 5512–5520.

    Article  CAS  Google Scholar 

  60. Wegrzyn, J., et al. (2008). Bioinformatic analyses of mammalian 5′-UTR sequence properties of mRNAs predicts alternative translation initiation sites. BMC Bioinformatics, 9(1), 232.

    Article  Google Scholar 

  61. Ringnér, M., & Krogh, M. (2005). Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Computational Biology, 1(7), e72.

    Article  Google Scholar 

  62. Mihailovich, M., et al. (2007). Complex translational regulation of BACE1 involves upstream AUGs and stimulatory elements within the 5′ untranslated region. Nucleic Acids Research, 35(9), 2975–2985.

    Article  CAS  Google Scholar 

  63. Mignone, F., et al. (2002). Untranslated regions of mRNAs. Genome Biology, 3(3), 0004.1–0004.10.

  64. Chappell, S. A., Edelman, G. M., & Mauro, V. P. (2000). A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proceedings of the National Academy of Sciences, 97(4), 1536–1541.

    Article  CAS  Google Scholar 

  65. Stoneley, M., & Willis, A. E. (2004). Cellular internal ribosome entry segments: Structures, trans-acting factors and regulation of gene expression. Oncogene, 23(18), 3200–3207.

    Article  CAS  Google Scholar 

  66. Jordan, I. K., et al. (2003). Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends in Genetics, 19(2), 68–72.

    Article  CAS  Google Scholar 

  67. Gubler, F., et al. (1995). Gibberellin-regulated expression of a myb gene in barley aleurone cells: Evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. The Plant Cell Online, 7(11), 1879–1891.

    CAS  Google Scholar 

  68. Gubler, F., et al. (1999). Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. The Plant Journal, 17(1), 1–9.

    Article  CAS  Google Scholar 

  69. Xue, G. P. (2002). Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Research, 30(15), e77.

    Article  Google Scholar 

  70. Xue, G.-P. (2002). An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t) CGAC motif. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 63–72.

    Article  CAS  Google Scholar 

  71. Xue, G. P. (2003). The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. The Plant Journal, 33(2), 373–383.

    Article  CAS  Google Scholar 

  72. Mohanty, B., et al. (2005). Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Annals of Botany, 96(4), 669–681.

    Article  CAS  Google Scholar 

  73. Sell, S., & Hehl, R. (2004). Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. European Journal of Biochemistry, 271(22), 4534–4544.

    Article  CAS  Google Scholar 

  74. Kusano, T., et al. (1995). A maize DNA-binding factor with a bZIP motif is induced by low temperature. Molecular and General Genetics MGG, 248(5), 507–517.

    Article  CAS  Google Scholar 

  75. Bentsink, L., et al. (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, 103(45), 17042–17047.

    Article  CAS  Google Scholar 

  76. Siberil, Y., Doireau, P., & Gantet, P. (2001). Plant bZIP G-box binding factors. European Journal of Biochemistry, 268(22), 5655–5666.

    Article  CAS  Google Scholar 

  77. Niu, X., et al. (1999). Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant Molecular Biology, 41(1), 1–13.

    Article  CAS  Google Scholar 

  78. Suckow, M., et al. (1994). Replacement of invariant bzip residues within the basic region of the yeast transcriptional activator GCN4 can Change its DNA binding specificity. Nucleic Acids Research, 22(21), 4395–4404.

    Article  CAS  Google Scholar 

  79. Aukerman, M. J., et al. (1991). An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes & Development, 5(2), 310–320.

    Article  CAS  Google Scholar 

  80. Nantel, A., & Quatrano, R. S. (1996). Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. Journal of Biological Chemistry, 271(49), 31296–31305.

    Article  CAS  Google Scholar 

  81. O’Shea, E. K., et al. (1991). X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science, 254(5031), 539–544.

    Article  Google Scholar 

  82. Thompson, K. S., Vinson, C. R., & Freire, E. (1993). Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry, 32(21), 5491–5496.

    Article  CAS  Google Scholar 

  83. Vinson, C., Hai, T., & Boyd, S. (1993). Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes & Development, 7(6), 1047–1058.

    Article  CAS  Google Scholar 

  84. Deppmann, C. D., et al. (2004). Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: A comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Research, 32(11), 3435–3445.

    Article  CAS  Google Scholar 

  85. Abebe, T., et al. (2010). Drought response in the spikes of barley: Gene expression in the lemma, palea, awn, and seed. Functional & Integrative Genomics, 10(2), 191–205.

    Article  CAS  Google Scholar 

  86. Guo, P., et al. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12), 3531–3544.

    Article  CAS  Google Scholar 

  87. Svensson, J. T., et al. (2006). Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiology, 141(1), 257–270.

    Article  CAS  Google Scholar 

  88. Greenup, A. G., et al. (2011). Transcriptome analysis of the vernalization response in barley (Hordeum vulgare) seedlings. PLoS ONE, 6(3), e17900.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Agricultural Biotechnology Research Institute of Iran (ABRII). The authors are grateful to Faezeh Tamimi for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra-Sadat Shobbar.

Additional information

Ehsan Pourabed and Farzan Ghane Golmohamadi contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourabed, E., Ghane Golmohamadi, F., Soleymani Monfared, P. et al. Basic Leucine Zipper Family in Barley: Genome-Wide Characterization of Members and Expression Analysis. Mol Biotechnol 57, 12–26 (2015). https://doi.org/10.1007/s12033-014-9797-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9797-2

Keywords

Navigation