Skip to main content

Advertisement

Log in

Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2021

This article has been updated

Abstract

Resistance to chemotherapeutic drugs remains a great obstacle to successful treatment of gliomas. Understanding the mechanism of glioma chemoresistance is conducive to develop effective strategies to overcome resistance. Astrocytes are the major stromal cells in the brain and have been demonstrated to play a key role in the malignant phenotype of gliomas. However, little is known regarding its role in glioma chemoresistance. In our study, we established a co-culture system of human astrocytes and glioma in vitro to simulate tumor microenvironment. Our results showed that astrocytes significantly reduced glioma cell apoptosis induced by the chemotherapeutic drugs temozolomide and vincristine. This protective effect was dependent on direct contact between astrocytes and glioma cells through Cx43-GJC. Moreover, in human glioma specimens, we found astrocytes infiltrating around the tumor, with a reactive appearance, suggesting that these astrocytes would play the same chemoprotective effect on gliomas in vivo. Our results expand the understanding of the interaction between astrocytes and glioma cells and provide a possible explanation for unsatisfactory clinical outcomes of chemotherapeutic drugs. Cx43-GJC between astrocytes and glioma cells may be a potential target for overcoming chemoresistance in gliomas clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi:10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  2. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008;14(10):2900–8. doi:10.1158/1078-0432.CCR-07-1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem. 2008;312(1–2):71–80. doi:10.1007/s11010-008-9722-8.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000;6(7):2585–97.

    CAS  PubMed  Google Scholar 

  5. Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev. 2011;31(3):443–81. doi:10.1002/med.20242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21(4):488–503. doi:10.1016/j.ccr.2012.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat. 2012;15(1–2):39–49. doi:10.1016/j.drup.2012.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Huang P. Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity. Cancer Biol Ther. 2011;11(2):150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4. doi:10.1038/nature11183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004;64(4):1331–7.

    Article  PubMed  Google Scholar 

  11. Shekhar MP, Santner S, Carolin KA, Tait L. Direct involvement of breast tumor fibroblasts in the modulation of tamoxifen sensitivity. Am J Pathol. 2007;170(5):1546–60. doi:10.2353/ajpath.2007.061004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–45. doi:10.1016/j.it.2007.01.005.

    Article  CAS  PubMed  Google Scholar 

  13. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502–14.

    Article  PubMed  Google Scholar 

  14. Nagano N, Sasaki H, Aoyagi M, Hirakawa K. Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol. 1993;86(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  15. Lal PG, Ghirnikar RS, Eng LF. Astrocyte-astrocytoma cell line interactions in culture. J Neurosci Res. 1996;44(3):216–22. doi:10.1002/(SICI)1097-4547(19960501)44:3<216:AID-JNR2>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  16. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76. doi:10.1038/nn2003.

    Article  CAS  PubMed  Google Scholar 

  17. Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia. 2005;50(4):307–20. doi:10.1002/glia.20204.

    Article  PubMed  Google Scholar 

  18. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55. doi:10.1523/JNEUROSCI.3547-03.2004.

    Article  CAS  PubMed  Google Scholar 

  19. Yang C, Rahimpour S, Yu AC, Lonser RR, Zhuang Z. Regulation and dysregulation of astrocyte activation and implications in tumor formation. Cell Mol Life Sci. 2013;. doi:10.1007/s00018-013-1274-8.

    PubMed Central  Google Scholar 

  20. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neurosci. 2005;11(5):400–7. doi:10.1177/1073858405278321.

    CAS  Google Scholar 

  21. Mahesh VB, Dhandapani KM, Brann DW. Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol. 2006;246(1–2):1–9. doi:10.1016/j.mce.2005.11.017.

    Article  CAS  PubMed  Google Scholar 

  22. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22. doi:10.1038/nrn2175.

    Article  CAS  PubMed  Google Scholar 

  23. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q, Langley RR, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia. 2011;13(3):286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia. 2010;12(9):748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krysko DV, Leybaert L, Vandenabeele P, D’Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis Int J Progr Cell Death. 2005;10(3):459–69. doi:10.1007/s10495-005-1875-2.

    Article  CAS  Google Scholar 

  26. Charles AC, Naus CC, Zhu D, Kidder GM, Dirksen ER, Sanderson MJ. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol. 1992;118(1):195–201.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Couldwell WT, Simard MF, Song H, Lin JH, Nedergaard M. Direct gap junction communication between malignant glioma cells and astrocytes. Cancer Res. 1999;59(8):1994–2003.

    CAS  PubMed  Google Scholar 

  28. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65. doi:10.1038/nrm1150.

    Article  CAS  PubMed  Google Scholar 

  29. Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8(5):361–75. doi:10.1038/nrc2374.

    Article  CAS  PubMed  Google Scholar 

  30. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi:10.1007/s00401-009-0619-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, et al. Isolation of a new cell population in the glioblastoma microenvironment. J Neurooncol. 2012;106(3):493–504. doi:10.1007/s11060-011-0701-7.

    Article  PubMed  Google Scholar 

  32. Oliveira R, Christov C, Guillamo JS, de Bouard S, Palfi S, Venance L, et al. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 2005;6(1):7. doi:10.1186/1471-2121-6-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun P, Liu Y, Ying H, Li S. Action of db-cAMP on the bystander effect and chemosensitivity through connexin 43 and Bcl-2-mediated pathways in medulloblastoma cells. Oncol Rep. 2012;28(3):969–76. doi:10.3892/or.2012.1900.

    CAS  PubMed  Google Scholar 

  34. Carystinos GD, Alaoui-Jamali MA, Phipps J, Yen L, Batist G. Upregulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-trans-retinoic acid is associated with glutathione depletion and chemosensitivity in neuroblastoma cells. Cancer Chemother Pharmacol. 2001;47(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  35. Robe PA, Nguyen-Khac M, Jolois O, Rogister B, Merville MP, Bours V. Dexamethasone inhibits the HSV-tk/ganciclovir bystander effect in malignant glioma cells. BMC Cancer. 2005;5:32. doi:10.1186/1471-2407-5-32.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chakravarti A, Erkkinen MG, Nestler U, Stupp R, Mehta M, Aldape K, et al. Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res. 2006;12(15):4738–46. doi:10.1158/1078-0432.CCR-06-0596.

    Article  CAS  PubMed  Google Scholar 

  37. Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, et al. Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell. 2002;94(7–8):457–75.

    Article  CAS  PubMed  Google Scholar 

  38. Warn-Cramer BJ, Lau AF. Regulation of gap junctions by tyrosine protein kinases. Biochim Biophys Acta. 2004;1662(1–2):81–95. doi:10.1016/j.bbamem.2003.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soroceanu L, Manning TJ Jr, Sontheimer H. Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia. 2001;33(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  40. Huang RP, Hossain MZ, Huang R, Gano J, Fan Y, Boynton AL. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer. 2001;92(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, et al. Connexin43 confers temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 2013;75:539–48. doi:10.1016/j.neuropharm.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  42. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 2014;5:e1145. doi:10.1038/cddis.2014.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Decrock E, Krysko DV, Vinken M, Kaczmarek A, Crispino G, Bol M, et al. Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ. 2012;19(6):947–57. doi:10.1038/cdd.2011.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M, et al. Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep. 2009;22(6):1349–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by Grants from the National Natural Science Foundation of China (81172404, 81372720), the Shandong Provincial Outstanding Medical Academic Professional Program and the Special Foundation for Taishan Scholars (ts20110814). The authors are grateful to Dr. Lei Zhao and Jintang Sun for FACS analysis, and Zhong Yao, Ming Liu and Yang Xu for human glioma specimen collection.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, D., Du, X. et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 32, 43 (2015). https://doi.org/10.1007/s12032-015-0487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0487-0

Keywords

Navigation