Skip to main content
Log in

Residual soil DNA extraction increases the discriminatory power between samples

  • Technical Report
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Forensic soil analysis relies on capturing an accurate and reproducible representation of the diversity from limited quantities of soil; however, inefficient DNA extraction can markedly alter the taxonomic abundance. The performance of a standard commercial DNA extraction kit (MOBIO PowerSoil DNA Isolation kit) and three modified protocols of this kit: soil pellet re-extraction (RE); an additional 24-h lysis incubation step at room temperature (RT); and 24-h lysis incubation step at 55 °C (55) were compared using high-throughput sequencing of the internal transcribed spacer I ribosomal DNA. DNA yield was not correlated with fungal diversity and the four DNA extraction methods displayed distinct fungal community profiles for individual samples, with some phyla detected exclusively using the modified methods. Application of a 24 h lysis step will provide a more complete inventory of fungal biodiversity, and re-extraction of the residual soil pellet offers a novel tool for increasing discriminatory power between forensic soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Concheri G. Chemical elemental distribution and soil DNA fingerprints provide the critical evidence in murder case investigation. PLoS ONE. 2011;6:e20222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fitzpatrick RW, Raven MD, Forrester ST. A systematic approach to soil forensics: criminal case studies involving transference from crime scene to forensic evidence. In: Ritz K, Dawson L, Miller L, editors. Criminal and environmental soil forensics. Dordrecht: Springer; 2009. p. 105–27.

    Chapter  Google Scholar 

  3. Sensabaugh GF. Microbial community profiling for the characterisation of soil evidence: forensic considerations. In: Ritz K, Dawson L, Miller L, editors. Criminal and environmental soil forensics. Dordrecht: Springer; 2009. p. 49–60.

    Chapter  Google Scholar 

  4. Macdonald LM, Singh BK, Thomas N, Brewer MJ, Campbell CD, Dawson LA. Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition. J Appl Microbiol. 2008;105:813–21.

    Article  CAS  PubMed  Google Scholar 

  5. Young JM, Weyrich LS, Cooper A. Forensic soil DNA analysis using high-throughput sequencing: a comparison of four molecular markers. Forensic Sci Int Genet. 2014;13:176–84.

    Article  CAS  PubMed  Google Scholar 

  6. Delmont TO, Robe P, Clark I, Simonet P, Vogel TM. Metagenomic comparison of direct and indirect soil DNA extraction approaches. J Microbiol Methods. 2011;86:397–400.

    Article  CAS  PubMed  Google Scholar 

  7. Robe P, Nalin R, Capellano C, Vogel TA, Simonet P. Extraction of DNA from soil. Eur J Soil Biol. 2003;39:183–90.

    Article  CAS  Google Scholar 

  8. Courtois S, Frostegård A, Göransson P, Depret G, Jeannin P, Simonet P. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol. 2001;3:431–9.

    Article  CAS  PubMed  Google Scholar 

  9. Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P. Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol. 1999;65:5409–20.

    PubMed Central  PubMed  Google Scholar 

  10. Feinstein LM, Sul WJ, Blackwood CB. Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol. 2009;75:5428–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Jiang YX, Wu JG, Yu KQ, Ai CX, Zou F, Zhou HW. Integrated lysis procedures reduce extraction biases of microbial DNA from mangrove sediment. J Biosci Bioeng. 2011;111:153–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou JZ, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Mumy KL, Findlay RH. Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods. 2004;57:259–68.

    Article  CAS  PubMed  Google Scholar 

  14. Lloyd-Jones G, Hunter DWF. Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils. Soil Biol Biochem. 2001;33:2053–9.

    Article  CAS  Google Scholar 

  15. Jones MD, Singleton DR, Sun W, Aitken MD. Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol. 2011;77:2984–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Berry D, Mahfoudh KB, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2011;77:7846–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012;21:1821–33.

    Article  CAS  PubMed  Google Scholar 

  18. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;(6):pdb.prot5448.

  19. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics in Action. 2012;17:10–2.

    Google Scholar 

  20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    Article  CAS  PubMed  Google Scholar 

  22. Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol. 2012;93:931–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an ARC Linkage Grant between the University of Adelaide and the Australian Federal Police. We thank Alla Marchuk for collecting the soil samples and members of the Australian Centre for Ancient DNA for helpful comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Young.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, J.M., Weyrich, L.S., Clarke, L.J. et al. Residual soil DNA extraction increases the discriminatory power between samples. Forensic Sci Med Pathol 11, 268–272 (2015). https://doi.org/10.1007/s12024-015-9662-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-015-9662-z

Keywords

Navigation