Skip to main content

Microbial Community Profiling for the Characterisation of Soil Evidence: Forensic Considerations

  • Chapter
Criminal and Environmental Soil Forensics

Soil contains a very rich and diverse array of microbial species. The observation by soil scientists that soil samples from different locales possess different microbial species' profiles has suggested that this approach might have potential forensic utility for linking soil evidence samples to their sites of origin. This chapter outlines the biology and technology of microbial community profiling, particularly in relation to DNA analysis. Three research challenges are posed and discussed that must be addressed if this approach is to find a place in the forensic armamentarium: (i) it must be demonstrated that microbial population assemblages vary in such a way as to allow samples from a particular patch to be differentiated from samples deriving from other places; (ii) analytical approaches to microbial community profiling must be developed that combine discriminatory power, robustness and reliability; and (iii) statistical methods must be identified that provide objective measures for assessing the similarities and differences between samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adl S and Coleman D (2005). Dynamics of soil protozoa using a direct count method. Biology and Fertility of Soils 42:168–171.

    Article  Google Scholar 

  • Anderson IC and Cairney JWG (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology 6:769–779.

    Article  PubMed  CAS  Google Scholar 

  • Bass-Becking LGM (1934). Geobiologie of Inleiding to de Milieukunde. van Stockum & Zoon, The Hague.

    Google Scholar 

  • Blackwood CB, Oaks A and Buyer JS (2005). Phylum and class specific PCR primers for general microbial community analysis. Applied and Environmental Microbiology 71:6193–6198.

    Article  PubMed  CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM and Firestone MK (2006). Application of a high density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology 72:6288–6298.

    Article  PubMed  CAS  Google Scholar 

  • Cho JC and Tiedje JM (2000). Biogeography and degree of endemicity of fluorescent pseudomonas strains in soil. Applied and Environmental Microbiology 66:5448–5456.

    Article  PubMed  CAS  Google Scholar 

  • Cole J, Chai B, Farris R, Wang Q, Kulam SA, McGarrell DM, Garrity GM and Tiedje JM (2005). The Ribosomal Database Project (RDP II): sequences and tools for high throughput rRNA analysis. Nucleic Acids Research 33:D294–D296.

    Article  PubMed  CAS  Google Scholar 

  • Davelos AL, Xiao K, Samac DA, Martin AP and Kinkel LL (2004). Spatial variation in streptomyces genetic composition and diversity in a prairie soil. Microbial Ecology 48:601–612.

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J, Vos A, Bloem J and Kuikman PJ (2004). Microbial diversity in archived agricultural soils. The past as a guide to the future. In: Alterra rapport 916, Alterra, Wageningen, the Netherlands. http://www.alterra.wur.nl/internet/modules/pub/PDFFiles/ Alterrararrporten/ AlterraRapport916.pdf

  • Esteban GF, Clarke KJ, Olmo JL and Finlay BJ (2006). Soil protozoa — an intensive study of population dynamics and community structure in an upland grassland. Applied Soil Ecology 33:137–151.

    Article  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F and Jackson RB (2007). Metagenomic and small subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and Environmental Microbiology 73:7059–7066.

    Article  PubMed  CAS  Google Scholar 

  • Fierer N and Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings National Academy Sciences 103:626–631.

    Article  CAS  Google Scholar 

  • Finlay BJ (2002). Global dispersal of free living microbial eukaryote species. Science 296:1061–1063.

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (2006). Biogeography and dispersal of micro organisms: a review emphasising protists. Acta Protozoologica 45:111–136.

    Google Scholar 

  • Franklin RB, Blum LK, McComb AC and Mills AL (2002). A geostatistical analysis of small scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments. FEMS Microbiology Ecology 42:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Franklin RB and Mills AL (2003). Multi scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiology Ecology 44:335–346.

    Article  PubMed  CAS  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M and Rossi P (2002). Statistical analysis of denaturing gel electrophoresis (DGGE). fingerprinting patterns. Environmental Microbiology 4:634–643.

    Article  PubMed  CAS  Google Scholar 

  • Goovaerts P (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico chemical soil properties. Biology and Fertility of Soils 27:315–334.

    Article  CAS  Google Scholar 

  • Grundmann GL (2004). Spatial scales of soil bacterial diversity the size of a clone. FEMS Microbiology Ecology 48:119–127

    Article  CAS  Google Scholar 

  • Heath LE and Saunders VA (2006). Assessing the potential of bacterial DNA profiling for forensic soil comparisons. Journal of Forensic Sciences 51:1062–1068.

    Article  PubMed  CAS  Google Scholar 

  • Horswell J CS, Maas EW, Martin TM, Sutherland KBW, Speir TW, Nogales B and Osborn AM (2002). Forensic comparison of soils by bacterial community DNA profiling. Journal of Forensic Sciences 47:350–353.

    PubMed  CAS  Google Scholar 

  • Ingham ER (2006). The Soil Biology Primer, Chapters 3–6. United States Department of Agriculture (http://soils.usda.gov/sqi/concepts/soil_biology). Accessed Dec. 1, 2007.

  • Janssen PH (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72:1719–1728.

    Article  PubMed  CAS  Google Scholar 

  • Kent AD, Smith DJ, Benson BJ and Triplett EW (2003). Web based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology 69:6768–6776.

    Article  PubMed  CAS  Google Scholar 

  • Koch TA and Ekelund F (2005). Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist 156:97–112.

    Article  PubMed  CAS  Google Scholar 

  • Kuske CR, Barns SM, Grow CC and Merrill LJD (2006). Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. Journal of Forensic Sciences 51:548–558.

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Marsh T, Cheng H and Forney L (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63:4516–4522.

    PubMed  CAS  Google Scholar 

  • Liu Z, Lozupone C, Hamady M, Bushman FD and Knight R (2007). Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research 35:120.

    Article  CAS  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, ØvreÃ¥s L, Reysenbach A-L, Smith VH and Staley JT (2006). Microbial biogeography:putting microorganisms on the map. Nature Reviews Microbiology 4:102–112.

    Article  PubMed  CAS  Google Scholar 

  • Moreno LI, Mills DK, Entry J, Sautter RT and Mathee K (2006). Microbial metagenome profiling using amplicon length heterogeneity polymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens. Journal of Forensic Sciences 51:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Burr M and Camper A (2007). Genotypic microbial community profiling: a critical technical review. Microbial Ecology 54:276–289.

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1997). A molecular view of microbial diversity and the biosphere. Science 276:734–740.

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D and Chaussod R (2003). Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environmental Microbiology 5:1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Poly F, Lata J C, Mougel C, Thioulouse J and Nazaret S (2001). Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology 67:4479–4487.

    Article  PubMed  CAS  Google Scholar 

  • Ritz K (2005). Fungi. In: Encyclopedia of Soils in the Environment (Ed. D. Hillel), pp. 110–119. Elsevier Ltd, Oxford.

    Google Scholar 

  • Ritz K, McNicol JW, Nunan N, Grayston S, Millard P, Atkinson D, Gollotte A, Habeshaw D, Boag B, Clegg CD, Griffiths BS, Wheatley RE, Glover LA, McCaig AE and Prosser JI (2004). Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology 49:191–205.

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG and Triplett EW (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal 1:283–290.

    PubMed  CAS  Google Scholar 

  • Torsvik V, Ovreas L and Thingstad TF (2002). Prokaryotic diversity magnitude, dynamics, and controlling factors. Science 296:1064–1066.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW and Taylor JW (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Sensabaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sensabaugh, G.F. (2009). Microbial Community Profiling for the Characterisation of Soil Evidence: Forensic Considerations. In: Ritz, K., Dawson, L., Miller, D. (eds) Criminal and Environmental Soil Forensics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9204-6_4

Download citation

Publish with us

Policies and ethics