Skip to main content

Advertisement

Log in

The Role of PTHrP in Skeletal Metastases and Hypercalcemia of Malignancy

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Since its discovery as the principal mediator of humoral hypercalcemia of malignancy, parathyroid hormone-related protein (PTHrP) has emerged as a key player in skeletal complications associated with solid tumor metastasis to bone. In addition to functioning as an endocrine factor, this pleiotropic peptide mediates its actions locally on tumor and stromal cells in paracrine, autocrine, and intracrine fashion when cancer metastasizes to the bone compartment. Multiple splice variants and newly described PTHrP fragments confer diverse functions to PTHrP that extend beyond binding to its common receptor with parathyroid hormone. Here, we summarize the causal role of PTHrP in humoral hypercalcemia of malignancy and its local involvement in the progression of osteolytic and osteoblastic cancer bone metastases. Clinical and preclinical findings describing how PTHrP regulates tumor and stromal cell interactions are summarized, with emphasis on emerging evidence of PTHrP’s role in tumorigenesis and cancer cell proliferation. Finally, we examine therapeutic opportunities and limitations to targeting PTHrP directly and indirectly in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zondek H, Petow H, Siebert W. Die bedeutung der calciumbestimmung im blute fur die diagnose der niereninsuffzientz. Zeitschrift fur Klinische Medizin. 1923;99:128–38.

    Google Scholar 

  2. Case records of the Massachusetts General Hospital (case 27461). N Engl J Med. 1941;225:789–91.

    Google Scholar 

  3. Suva LJ, Winslow GA, Wettenhall RE, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237:893–6.

    CAS  PubMed  Google Scholar 

  4. Stewler GJ, Stern PH, Jacobs JW, et al. Parathyroid hormone-like protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest. 1987;80:1803–7.

    Google Scholar 

  5. Burtis WJ, Wu T, Bunch C, et al. Identification of a novel 17,000-dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy. J Biol Chem. 1987;2:587–93.

    Google Scholar 

  6. Stewart AF, Burtis WJ, Wu T, Goumas D, Broadus AE. Two forms of parathyroid hormone-like adenylase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy. J Bone Miner Res. 1987;2:587–93.

    CAS  PubMed  Google Scholar 

  7. Mundy GR. Metastasis to bone: causes, consequences, and therapeutic opportunities. Nat Rev Cancer. 2002;2:284–93.

    Google Scholar 

  8. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    CAS  PubMed  Google Scholar 

  9. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11:411–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Clines GA. Mechanisms and treatment of hypercalcemia of malignancy. Curr Opin Endocrinol Diabetes Obes. 2011;18:229–346.

    Google Scholar 

  11. Grill V, Martin TJ. Hypercalcemia of malignancy. Rev Endocr Metab Disord. 2000;1:253–63.

    CAS  PubMed  Google Scholar 

  12. Ralston SH, Gallacher SJ, Patel U, et al. Cancer-associated hypercaclemia: morbidity and mortality. Clinical experience in 126 treated patients. Ann Intern Med. 1990;112:499–504.

    CAS  PubMed  Google Scholar 

  13. Grill V, Ho P, Body JJ, et al. Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia of malignancy and hypercalcemia complicating metastatic breast cancer. J Clin Endorcinol Metab. 1991;73:1309–15.

    CAS  Google Scholar 

  14. Rizzoli R, Thiebaud D, Bundred N, et al. Serum parathyroid hormone-related protein levels and response to bisphosphonate treatment in hypercalcemia of malignancy. J Clin Endocrinol Metab. 1999;84:3545–50.

    CAS  PubMed  Google Scholar 

  15. Ikeda K, Ohno H, Hane M, et al. Development of a sensitive two-site immunoradiometric assay for parathyroid hormone-related peptide: evidence for elevated levels in plasma from patients with adult T-cell leukemia/lymphoma and B-cell lymphoma. J Clin Endrocrinol Metab. 1994;79:1322–7.

    CAS  Google Scholar 

  16. Kremer R, Shustik C, Tabek T, et al. Parathyroid hormone-related in hematologic malignancies. Am J Med. 1996;100:406–11.

    CAS  PubMed  Google Scholar 

  17. Gover A, Kumar PD, Brown LA, Ravakhah K. Hypercalcemia induced by parathyroid hormone-related peptide after treatment of carcinoma. South Med J. 2002;95:258–60.

    PubMed  Google Scholar 

  18. Papworth K, Grankvist K, Ljungberg B, Rasmuson T. Parathyroid hormone related peptide and serum calcium in patients with renal cell carcinoma. Tumour Biol. 2005;26:201–6.

    CAS  PubMed  Google Scholar 

  19. Yoshida T, Suzumiya J, Katakami H, et al. Hypercalcemia caused by PTH-rP associated with lung metastasis from urinary bladder carcinoma: an autopsied case. Intern Med. 1994;33:673–6.

    CAS  PubMed  Google Scholar 

  20. Martin TJ, Grill V. Hypercalcemia in cancer. J Steroid Biochem. 1992;43:123–9.

    CAS  Google Scholar 

  21. Motokura T, Fukumoto S, Matsumoto T, Takahashi S, Fujita A, Yamashita T, et al. Parathyroid hormone-related protein in adult T-cell leukemia-lymphoma. Ann Intern Med. 1989;111:484–8.

    CAS  PubMed  Google Scholar 

  22. Pioszak AA, Parker NR, Garella TJ, Xu HA. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem. 2009;284:28382–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol. 2008;22:156–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rankin W, Grill V, Martin TJ. Parathyroid hormone-related protein and hypercalcemia. Cancer. 1997;80:1564–71.

    CAS  PubMed  Google Scholar 

  25. Ma YL, Cain RL, Halladay DL, Yan X, Zeng Q, Miles RR, Chandrasekhar S, Martin TJ, Onyia JE. Catabolic effects of continuous PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142:4047–54.

    CAS  PubMed  Google Scholar 

  26. Schilling T, Pecherstorfer M, Blind E, et al. Parathyroid hormone-related protein (PTHrP) does not regulate 1-25-dihydroxyvitamin D serum levels in hypercalcemia of malignancy. J Clin Endocrinol Metab. 1993;76:801–3.

    CAS  PubMed  Google Scholar 

  27. Horwitz MJ, Tedesco MB, Sereika SM, et al. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D. J Bone Miner Res. 2005;20:1792–803.

    CAS  PubMed  Google Scholar 

  28. Thiebaud D, Jacquet AF, Burckhardt P. Fast and effective treatment of malignant hypercalcemia. Combination of suppositories of calcitonin and a single infusion of 3-amino 1-hydroxypropylidene-1-bisphosphonate. Arch Intern Med. 1990;150:2125–8.

    CAS  PubMed  Google Scholar 

  29. Nussbaum SR, Younger J, Vanepol CJ, et al. Single-dose intravenous therapy with pamidronate for the treatment of hypercaclemia of malignancy: comparison of 30-, 60-, and 90-mg dosages. Am J Med. 1993;95:297–304.

    CAS  PubMed  Google Scholar 

  30. Southby J, Kissin MW, Danks JA, Hayman JA, Moseley JM, Henderson MA, Bennett RC, Martin TJ. Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res. 1990;50:7710–6.

    CAS  PubMed  Google Scholar 

  31. Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, Bennett RC, Martin TJ. Localization of parathyroid hormone-related protein in breast cancer metastasis: increased incidence in bone compared to other sites. Cancer Res. 1991;51:3059–61.

    CAS  PubMed  Google Scholar 

  32. Bouzier Z, Spyratos F, Deytieux S, de Vernejoul MC, Jullienne A. Polymerase chain reaction analysis of parathyroid hormone-related protein gene expression in breast cancer patients and occurrence of bone metastases. Cancer Res. 1993;53:5076–8.

    Google Scholar 

  33. Bundred NJ, Walker RA, Ratcliffe WA, Warwick J, Morrison JM, Ratcliffe JG. Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer. 1992;28:690–2.

    CAS  PubMed  Google Scholar 

  34. Henderson M, Danks J, Moseley J, Slavin J, Harris T, McKinlay M, Hopper J, Martin T. Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. J Natl Cancer Inst. 2001;92:234–7.

    Google Scholar 

  35. Henderson MA, Danks JA, Slavin JL, Brynes GB, Choong PF, Spillane JB, Hopper JL, Martin TJ. Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Res. 2006;66:2250–6.

    CAS  PubMed  Google Scholar 

  36. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA. TFG-beta signaling blockade inhibits PTHrP secretion from breast cancer cells and bone metastases development. J Clin Invest. 1999;103:197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Montgrain PR, Deftos LJ, Arenberg D, Tipps A, Quintana R, Carskadon S, Hastings RH. Prognostic implications of parathyroid hormone-related protein in males and females with non-small-cell lung cancer. Clin Lung Cancer. 2011;12:197–205.

    PubMed  Google Scholar 

  38. Dunbar ME, Young P, Zhang JP, et al. Stromal cells are critical targets in the regulation of mammary ductal morphogenesis by parathyroid hormone-related protein. Dev Biol. 1998;203:75–89.

    CAS  PubMed  Google Scholar 

  39. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development. 1998;125:1285–94.

    CAS  PubMed  Google Scholar 

  40. Hastings RH, Summers-Torres D, Cheung TC, Ditmer LS, Burton DW, Petrin EM, Spragg RG, Li J, Deftos LJ. Parathyroid hormone-related protein (PTHRP) is an autocrine regulator of differentiation for type II pneumocytes. Am J Physiol. 1996;14:L353–61.

    Google Scholar 

  41. Ghoussaini M, Fletcher O, Michailidou K, et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2012;44:312–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bryden AA, Hoyland JA, Freemont AJ, Clarke NW, George NJ. Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases. Br J Cancer. 2002;86:322–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwamura M, di Sant’Agnese PA, Wu G, Benning CM, Cockett AT, Deftos LJ, Abrahamsson PA. Immunohistochemical localization of parathyroid hormone-related protein in human prostate cancer. Cancer Res. 1993;53:1724–6.

    CAS  PubMed  Google Scholar 

  44. Liao J, McCauley LK. Skeletal metastasis: established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Metastasis Rev. 2006;25:559–71.

    CAS  PubMed  Google Scholar 

  45. Deftos LJ, Barken I, Burton DW, Hoffman RM, Geller J. Direct evidence that PTHrP expression promotes prostate cancer progression in bone. Biochem Biophys Res Commun. 2005;327:468–72.

    CAS  PubMed  Google Scholar 

  46. Nishihara M, Ito M, Tomioka T, Ohtsuru A, Taguchi T, Kanematsu T. Clinicopathological implications of parathyroid hormone-related protein in human colorectal tumours. J Pathol. 1999;10:796–803.

    Google Scholar 

  47. Shen X, Rychahou PG, Evers BM, Falzon M. PTHrP increases xenograft growth and promotes integrin alpha6beta4 expression and Akt activation in colon cancer. Caner Lett. 2007;258:241–53.

    CAS  Google Scholar 

  48. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann NY Acad Sci. 2010;1198:173–81.

    PubMed  Google Scholar 

  49. Mundy GR, Edwards JR. PTH-related peptide (PTHrP) in hypercalcemia. J Am Soc Nephrol. 2008;19:672–5.

    CAS  PubMed  Google Scholar 

  50. Stewart A, Horst R, Deftos L, Cadman E, Lang R, Broadus A. Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and non-humoral groups. N Engl J Med. 1980;303:1377–83.

    CAS  PubMed  Google Scholar 

  51. Stewart AF. Hypercalcemia associated with cancer. N Engl J Med. 2005;352:373–9.

    CAS  PubMed  Google Scholar 

  52. Paget S. The distribution of secondary growths of cancer of the breast. Cancer Metastasis Rev. 1998;8:98–101.

    Google Scholar 

  53. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991;263:30–48.

    PubMed  Google Scholar 

  54. Javelaud D, Alexaki VI, Dennler S, Mohammad KS, Guise TA, Mauviel A. TGF-beta/SMAD/Gli2 signaling axis in cancer progression and metastasis. Cancer Res. 2011;71:5606–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo D, Huan J, Gong J. Bone morphogenic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol Cell Biochem. 2012;363:179–90.

    CAS  PubMed  Google Scholar 

  56. Buijs JT, Stayrook KR, Guise TA. TGF-β in the bone microenvironment: role in breast cancer metastases. Cancer Microenviron. 2011;4:261–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    CAS  PubMed  Google Scholar 

  58. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98:1544–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140:4451–8.

    CAS  PubMed  Google Scholar 

  60. Lindemann RK, Ballschmieter P, Nordheim A, Dittmer J. Transforming growth factor beta regulates parathyroid hormone-related protein expression in MDA-MB-231 breast cancer cells through a novel Smad/Ets synergism. J Biol Chem. 2001;276:46661–70.

    CAS  PubMed  Google Scholar 

  61. Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem. 2002;277:24571–8.

    CAS  PubMed  Google Scholar 

  62. Sterling JA, Oyajobi BO, Grubbs B, Padalecki SS, Munoz SA, Gupta A, Story B, Zhao M, Mundy GR. The hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cell. Cancer Res. 2006;66:7548–53.

    CAS  PubMed  Google Scholar 

  63. Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi BO, Matrisian LM, Mundy GR, Sterling JA. TGF-β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res. 2011;71:822–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruppender NS, Merkel AR, Martin TJ, Mundy GR, Sterling JA, Guelcher SA. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One. 2010;5:e15451.

    PubMed  PubMed Central  Google Scholar 

  65. Guelcher SA, Sterling JA. Contribution of bone tissue modulus to breast cancer metastasis to bone. Cancer Microenviron. 2011;4:247–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Page J, Ruppender NS, Cannonier S, Dadwall U, Merkel AR, Guelcher SA, Sterling JA. Integrin β-3 and TGF-β receptor type II cross-talk induces osteolysis in bone metastatic breast cancer cells. BoneKEy. 2013;10S1:S30.

    Google Scholar 

  67. Roudier MP, Corey E, True LD, Hiagno CS, Ott SM, Vessell RL. Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. Cancer Treat Res. 2004;118:311–39.

    PubMed  Google Scholar 

  68. Logothetis CJ, Lin SH. Osteoblasts and prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–8.

    CAS  PubMed  Google Scholar 

  69. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ, et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer. 2008;123:2267–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Clines GA, Mohammad KS, Wessner LL, Chirgwin JM, Guise TA. Endothelin-1 stimulates bone formation by regulating osteoblast secretion of the paracrine regulators IL-6, Cyr61, CTGF, and Dkk1. J Bone Miner Res. 2005;20:S249.

    Google Scholar 

  71. Guise TA, Mohammad KS, Clines GA, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 2006;12:S6213–6.

    Google Scholar 

  72. Schluter KD, Katzer C, Piper HM. A N-terminal PTHrP peptide fragment void of a PTH/PTHrP-receptor binding domain activates cardiac ET(A) receptors. Br J Pharmacol. 2001;132:427–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang H, Yu C, Keller JM, Hua A, Sottnik JL, Shelley G, Hall CL, Park SI, Zhang J, McCauley LK, Keller ET. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer. 2013. Oncogene. 2013; Jun 10. doi:10.1038/onc.2013.203. [Epub ahead of print].

  74. Thudi NK, Martin CK, Murahari S, Shu ST, Lanigan LG, Werbeck JL, Keller ET, McCauley LK, Pinzone JJ, Rosol TJ. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis inhibited bone formation in osteoblastic bone metastases. Prostate. 2011;71:615–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Akino K, Ohtsuru A, Kanda K, et al. Parathyroid hormone-related peptide is a potent tumor angiogenic factor. Endocrinology. 2000;141:4313–6.

    CAS  PubMed  Google Scholar 

  76. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem. 2007;282:33098–106.

    CAS  PubMed  Google Scholar 

  77. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009;69:1685–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim MS, Day CJ, Morrison NA. MCP-1 is induced by receptor activator of nuclear factor-κB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem. 2005;280:16163–9.

    CAS  PubMed  Google Scholar 

  79. Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ. The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology. 2009;150:2244–53.

    CAS  PubMed  Google Scholar 

  80. De Miguel F, Martinez-Fernandez P, Guillen C, Valin A, Rodrigo A, Martinez ME, Esbrit P. Parathyroid hormone-related protein (107–139) stimulates interleukin-6 expression in human osteoblastic cells. J Am Soc Nephrol. 1999;10:796–803.

    PubMed  Google Scholar 

  81. Gujral A, Burton DW, Terkeltaub R, Deftos LJ. Parathyroid hormone-related protein induces interleukin 8 production by prostate cancer cells via a novel intracrine mechanism not mediated by it classical nuclear localization sequence. Cancer Res. 2001;61:2282–8.

    CAS  PubMed  Google Scholar 

  82. Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LeBonte MJ, Wilson PM, Ladner RD, Lenz HJ. Interleukin-8 is associated with proliferation, migration angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 2011;128:2038–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gujral A, Burton DW, Terkeltaub R, Deftos LJ. Parathyroid hormone-related protein induces interleukin 8 production by prostate cancer cells via a novel intracrine mechanism not mediated by its classical nuclear localization sequence. Cancer Res. 2001;61:2282–8.

    CAS  PubMed  Google Scholar 

  84. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170:3369–76.

    CAS  PubMed  Google Scholar 

  85. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–9.

    CAS  PubMed  Google Scholar 

  86. Fleming NI, Trivett MK, George J, Slavin JL, Murray WK, Moseley JM, Anderson RL, Thomas DM. Parathyroid hormone-related protein protects against mammary tumor emergence and is associated with monocyte infiltration in ductal carcinoma in situ. Cancer Res. 2009;69:7473–9.

    CAS  PubMed  Google Scholar 

  87. Li J, Karaplis AC, Huang DC, Siegel PM, Camirand A, Yang XF, Muller WJ, Kremer R. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target. J Clin Invest. 2011;121:4655–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    CAS  PubMed  Google Scholar 

  89. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97:2947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin TJ, Moseley JM, Gillespie MT. Parathyroid hormone-related protein: biochemistry and molecular biology. Crti Rev Biochem Mol Biol. 1991;26:377–95.

    CAS  Google Scholar 

  91. de Castro LF, Lozano D, Portal-Nunez S, et al. Comparison of the skeletal effects induced by daily administration of PTHrP (1–36) and PTHrP (107–139) to ovariectomized mice. J Cell Physiol. 2012;227:1752–60.

    PubMed  Google Scholar 

  92. Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastases. Future Oncol. 2012;8:803–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res. 2012;27:1231–9.

    CAS  PubMed  Google Scholar 

  94. Hoey RP, Sanderson C, Iddon J, Brady G, Bundred NJ, Anderson NG. The parathyroid hormone-related protein receptor is expressed in breast cancer bone metastases and promotes autocrine proliferation in breast carcinoma cells. Br J Cancer. 2003;88:567–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fiaschi-Taesch NM, Stewart AF. Minireview: parathyroid hormone-related protein as an intracrine factor—trafficking mechanisms and functional consequences. Endocrinology. 2003;144:407–11.

    CAS  PubMed  Google Scholar 

  96. Jans DA, Thomas RJ, Gillespie MT. Parathyroid hormone-related protein (PTHrP): a nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. Vitam Horn. 2003;66:345–84.

    CAS  Google Scholar 

  97. Dougherty KM, Blomme EA, Koh AJ, et al. Parathyroid hormone-related protein as a growth regulator of prostate carcinoma. Cancer Res. 1999;59:6015–22.

    CAS  PubMed  Google Scholar 

  98. Falzon M, Du P. Enhanced growth of MCF-7 breast cancer cells overexpressing parathyroid hormone-related protein. Endocrinology. 2000;141:1882–92.

    CAS  PubMed  Google Scholar 

  99. Park SI, McCauley LK. Nuclear localization of parathyroid hormone-related peptide confers resistance to anoikis in prostate cancer cells. Endocr Relat Cancer. 2012;19:243–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhatia V, Saini MK, Falzon M. Nuclear PTHrP targeting regulates PTHrP secretion and enhances LoVo cell growth and survival. Regul Pept. 2009;158:149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen X, Qian L, Falzon M. PTH-related protein enhances MCF-7 breast cancer cell adhesion, migration, and invasion via an intracrine pathway. Exp Cell Res. 2004;294:420–33.

    CAS  PubMed  Google Scholar 

  102. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yarley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.

    CAS  PubMed  Google Scholar 

  103. Kukreja SC, Shevrin DH, Wimbiscus SA, Ebeling PR, Danks JA, Rodda CP, et al. Antibodies to parathyroid hormone-related protein lower serum calcium in athymic mouse models of malignancy-associated hypercalcemia due to human tumors. J Clin Invest. 1988;82:1798–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sato K, Onuma E, Yocum RC, Ogata E. Treatment of malignancy-associated hypercalcemia and cachexia with humanized anti-parathyroid hormone-related protein antibody. Semin Oncol. 2003;30S16:167–73.

    Google Scholar 

  105. Gallwitz WE, Guise TA, Mundy GR. Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo. J Clin Invest. 2002;110:1559–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Buijs JT, Stayrook KR, Guise TA. The role of TFG-β in bone metastasis: novel therapeutic perspectives. BoneKEy Rep. 2012;1:96.

    PubMed  PubMed Central  Google Scholar 

  107. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.

    CAS  PubMed  Google Scholar 

  108. Miao D, Liu H, Plut P, Niu M, Huo R, Goltzman D, et al. Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res. 2004;294:210–22.

    CAS  PubMed  Google Scholar 

  109. Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 2003;17:282–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007;104:8455–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Washam CL, Byrum SD, Leitzel K, Ali SM, Tackett AJ, Gaddy D, Sundermann SE, Lipton A, Suva LJ. Identification of PTHrP(12-48) as a plasma biomarker associated with breast cancer bone metastasis. Cancer Epidemiol Biomarkers Prev. 2013;22:972–83.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Defense Prostate Cancer Research Program postdoctoral training award PC101890 (LEW), the Jerry and Peggy Throgmartin Endowment (TAG), the Indiana Economic Development Fund, the National Cancer Institute (NCI/NIH) R01-CA69158 & U01-CA143057 (TAG), the V-Foundation (TAG), The Susan Komen Foundation (TAG), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS/NIH) R01-AR059221 (TAG).

Disclosures

Conflict of interest

Laura E. Wright and Theresa A. Guise declare that they have no conflict of interest.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa A. Guise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, L.E., Guise, T.A. The Role of PTHrP in Skeletal Metastases and Hypercalcemia of Malignancy. Clinic Rev Bone Miner Metab 12, 119–129 (2014). https://doi.org/10.1007/s12018-014-9160-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9160-y

Keywords

Navigation