Skip to main content

Advertisement

Log in

Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g CODremoved and volumetric substrate uptake rate (−rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21 ± 0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g CODremoved) and −rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., & Xing, X. H. (2013). States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 135, 292–303. doi:10.1016/j.biortech.2012.10.027.

    Article  CAS  Google Scholar 

  2. Cavinato, C., Giuliano, A., Bolzonella, D., Pavan, P., & Cecchi, F. (2012). Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. International Journal of Hydrogen Energy, 37(15), 11549–11555. doi:10.1016/j.ijhydene.2012.03.065.

    Article  CAS  Google Scholar 

  3. Farghaly, A., Tawfik, A., & Mona, G. (2015). Surfactant-supplemented mixed bacterial cultures to produce hydrogen from paperboard mill wastewater. Engineering in Life Sciences, 15(5), 525–532. doi:10.1002/elsc.201400099.

    Article  CAS  Google Scholar 

  4. Zimmerman, F. K. (1985). Detection of genetic activity in effluent from pulp and paper mills: mutagenicity in Saccharomyces cerevisiae. In T.R.E. (Ed.), Testing in Environmental Pollution Control (Horwood., pp. 105–117). London

  5. El-Kamah, H., Mahmoud, M., & Tawfik, A. (2011). Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater. Bioresource Technology, 102(14), 7029–7035. doi:10.1016/j.biortech.2011.04.017.

    Article  CAS  Google Scholar 

  6. Cheng, J. R., Liu, X. M., & Chen, Z. Y. (2016). Methane production from rice straw hydrolysate treated with dilute acid by anaerobic granular sludge. Applied Biochemistry and Biotechnology, 178(1), 9–20. doi:10.1007/s12010-015-1854-1.

    Article  CAS  Google Scholar 

  7. Chen, X., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., & Li, X. (2015). Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chemical Engineering Journal, 273, 254–260. doi:10.1016/j.cej.2015.03.067.

    Article  CAS  Google Scholar 

  8. Albanez, R., Chiaranda, B. C., Ferreira, R. G., Franca, A. L. P., Honorio, C. D., Rodrigues, J. A. D., Ratusznei, S., & Zaiat, M. (2015). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-015-1856-z.

    Google Scholar 

  9. Mohanakrishna, G., & Mohan, S. V. (2013). Multiple process integrations for broad perspective analysis of fermentative H2 production from wastewater treatment: technical and environmental considerations. Applied Energy, 107, 244–254. doi:10.1016/j.apenergy.2013.01.085.

    Article  CAS  Google Scholar 

  10. Gomez-Romero, J., Gonzalez-Garcia, R. A., Chairez, I., Torres, L., & García-Peña, E. I. (2015). Continuous two-staged co-digestion process for biohydrogen production from agro-industrial wastes. International Journal of Energy Research, 40(2), 257–272.

    Article  Google Scholar 

  11. Andrea, S., Alberto, T., Barbara, S., Giuseppe, M., Aurora, R., Daniele, D., Roberto, O., & Fabrizio, A. (2012). Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environmental Science & Technology, 46(8502), 8510.

    Google Scholar 

  12. Grover, R., Marwaha, S. S., & Kennedy, J. F. (1999). Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors. Process Biochemistry, 34(6–7), 653–657. doi:10.1016/S0032-9592(98)00138-1.

    Article  CAS  Google Scholar 

  13. Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1–2), 61–64. doi:10.1016/j.jece.2013.03.007.

    Article  CAS  Google Scholar 

  14. Tawfik, A., & Salem, A. (2012). The effect of organic loading rate on bio-hydrogen production from pre-treated rice straw waste via mesophilic up-flow anaerobic reactor. Bioresource Technology, 107, 186–190. doi:10.1016/j.biortech.2011.11.086.

    Article  CAS  Google Scholar 

  15. Romao, B. B., Batista, F. R. X., Ferreira, J. S., Costa, H. C. B., Resende, M. M., & Cardoso, V. L. (2014). Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Applied Biochemistry and Biotechnology, 172(7), 3670–3685. doi:10.1007/s12010-014-0778-5.

    Article  CAS  Google Scholar 

  16. Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I. H., Yasar, A., Ali, S., Tahira, Y., & Riaz, M. (2014). Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.12.016.

    Google Scholar 

  17. Julian, C. R., Lourades, B. C., Felipe, A. M., & Elias, R. F. (2012). Different start-up strategies to enhance biohydrogen production from cheese whey in UASB reactors. International Journal of Hydrogen Energy, 37, 5591–5601. doi:10.1016/j.ijhydene.2012.01.004.

    Article  Google Scholar 

  18. Thanwised, P., Wirojanagud, W., & Reungsang, A. (2012). Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy, 37(20), 15503–15510. doi:10.1016/j.ijhydene.2012.02.068.

    Article  CAS  Google Scholar 

  19. Jayanthi, S., Deepika, S., & Marttin, G. P. (2013). Optimization of hydraulic retention time (HRT) for raw sugarmill wastewater using anaerobic sequential batch reactor. International Journal of Engineering, Science and Technology, 5(04), 195–202.

    Google Scholar 

  20. Elsamadony, M., Tawfik, A., Danial, A., & Suzuki, M. (2015). Optimization of hydrogen production from organic fraction of municipal solid waste (OFMSW) dry anaerobic digestion with analysis of microbial community. International Journal of Energy Research. doi:10.1002/er.3297.

    Google Scholar 

  21. Lin, C. Y., & Lay, C. H. (2004). Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29(1), 41–45. doi:10.1016/S0360-3199(03)00083-1.

    Article  CAS  Google Scholar 

  22. Anzola-Rojas, M. D. P., Gonçalves da Fonseca, S., Canedo da Silva, C., Maia de Oliveira, V., & Zaiat, M. (2015). The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnology Reports, 5, 46–54. doi:10.1016/j.btre.2014.10.010.

    Article  Google Scholar 

  23. Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134. doi:10.1016/j.biortech.2005.11.010.

    Article  CAS  Google Scholar 

  24. Stroot, P. G., McMahon, K. D., Mackie, R. I., & Raskin, L. (2001). Anaerobic codigestion of municipal solid waste and biosolids under various mixing condition. Water Research, 35, 1804–1816.

    Article  CAS  Google Scholar 

  25. Lee, H. S., & Rittmann, B. E. (2009). Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnology and Bioengineering, 102(3), 749–758. doi:10.1002/bit.22107.

    Article  CAS  Google Scholar 

  26. Lee, K., Hsu, Y., Lo, Y., Lin, P., Lin, C., & Chang, J. (2008). Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 33(5), 1565–1572. doi:10.1016/j.ijhydene.2007.10.019.

    Article  CAS  Google Scholar 

  27. Lay, C., Sen, B., Huang, S., Chen, C., & Lin, C. (2013). Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery. Renewable Energy, 58, 60–67. doi:10.1016/j.renene.2013.03.011.

    Article  CAS  Google Scholar 

  28. Hagelqvist, A. (2013). Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge. Waste Management, 33(4), 820–824. doi:10.1016/j.wasman.2012.11.002.

    Article  CAS  Google Scholar 

  29. Romero Aguilar, M. A., Fdez-Güelfo, L. A., Alvarez-Gallego, C. J., & Romero García, L. I. (2013). Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chemical Engineering Journal, 219, 443–449. doi:10.1016/j.cej.2012.12.090.

    Article  CAS  Google Scholar 

  30. Badiei, M., Jahim, J. M., Anuar, N., & Sheikh Abdullah, S. R. (2011). Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 36(10), 5912–5919. doi:10.1016/j.ijhydene.2011.02.054.

    Article  CAS  Google Scholar 

  31. Pawar, S. S., Nkemka, V. N., Zeidan, A. A., Murto, M., & Van Niel, E. W. J. (2013). Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. International Journal of Hydrogen Energy, 38(22), 9121–9130. doi:10.1016/j.ijhydene.2013.05.075.

    Article  CAS  Google Scholar 

  32. Hernández, M., & Rodríguez, M. (2013). Hydrogen production by anaerobic digestion of pig manure: effect of operating conditions. Renewable Energy, 53, 187–192. doi:10.1016/j.renene.2012.11.024.

    Article  Google Scholar 

  33. Lin, C., Chang, C., & Hung, C. (2008). Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy, 33(10), 2445–2453. doi:10.1016/j.ijhydene.2008.02.069.

    Article  CAS  Google Scholar 

  34. Dos Reis, C.M., Carosia, M. F., Sakamoto, I. K., Amâncio Varesche, M. B., & Silva, E.L. (2015). Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 0. doi:10.1016/j.ijhydene.2015.04.136

  35. Tawfik, A., & El-Qelish, M. (2014). Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater. Bioresource Technology. doi:10.1016/j.biortech.2014.02.127.

    Google Scholar 

  36. Chen, W., Chen, S., Kumarkhanal, S., & Sung, S. (2006). Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy, 31(15), 2170–2178. doi:10.1016/j.ijhydene.2006.02.020.

    Article  CAS  Google Scholar 

  37. Kim, J., & Kang, C. M. (2015). Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresource Technology, 189, 409–412. doi:10.1016/j.biortech.2015.04.028.

    Article  CAS  Google Scholar 

  38. Vinzant, T. B., Adney, W. S., Grohmann, K., & Rivard, C. J. (1990). Aerobic and anaerobic digestion of processed municipal solid waste. Applied Biochemistry and Biotechnology, 24–25(1), 765–771. doi:10.1007/BF02920293.

    Article  Google Scholar 

  39. Poontaweegeratigarn, T., Chavadej, S., & Rangsunvigit, P. (2012). Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature, 305–308.

  40. Latola, P. K. (1985). Treatment of different wastewater from pulp and paper industry in methane reactors. Water Science Technology, 17, 223–230.

    CAS  Google Scholar 

  41. Tawfik, A., Salem, A., El-qelish, M., Fahmi, A. A., & Moustafa, M. E. (2013). Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor. Renewable Energy, 50, 402–407. doi:10.1016/j.renene.2012.06.038.

    Article  CAS  Google Scholar 

  42. Chelliapan, S. (2012). Anaerobic digestion of paper mill wastewater. Iranica Journal of Energy & Environment, 3, 85–90. doi:10.5829/idosi.ijee.2012.03.05.14.

    Google Scholar 

  43. Dareioti, M. A., & Kornaros, M. (2014). Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresource Technology, 167, 407–415. doi:10.1016/j.biortech.2014.06.045.

    Article  CAS  Google Scholar 

  44. Foxon, K. M., Pillay, S., Lalbahadur, T., Rodda, N., Holder, F., & Buckley, C. A. (2004). The anaerobic baffled reactor (ABR): an appropriate technology for on-site sanitation. Water SA, 30(5), 592–598. doi:10.4314/wsa.v30i5.5165.

    CAS  Google Scholar 

  45. Abouelenien, F., Namba, Y., Nishio, N., & Nakashimada, Y. (2015). Dry co-digestion of poultry manure with agriculture wastes. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-015-1919-1.

    Google Scholar 

  46. Basri, M. F., Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., Zakaria, M. R., & Phang, L. Y. (2009). Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World Journal of Microbiology and Biotechnology, 26(3), 505–514. doi:10.1007/s11274-009-0197-x.

    Article  Google Scholar 

  47. De Amorim, E. L. C., Sader, L. T., & Silva, E. L. (2012). Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 166(5), 1248–1263. doi:10.1007/s12010-011-9511-9.

    Article  CAS  Google Scholar 

  48. Valdez-Vazquez, I., & Poggi-Varaldo, H. M. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews, 13(5), 1000–1013. doi:10.1016/j.rser.2008.03.003.

    Article  CAS  Google Scholar 

  49. Zhang, T., Liu, H., & Fang, H. H. P. (2003). Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management, 69, 149–156. doi:10.1016/S0301-4797(03)00141-5.

    Article  Google Scholar 

  50. Nelson, R. (2005). Methane generation from anaerobic digesters: considering different substrates Rebekkah Nelson, 1–11.

  51. Tawfik, A., El-Qelish, M., & Salem, A. (2015). Efficient anaerobic co-digestion of municipal food waste and kitchen wastewater for bio-hydrogen production. International Journal of Green Energy, 12(12), 1301–1308. doi:10.1080/15435075.2014.909357.

    Article  CAS  Google Scholar 

  52. Mongi, F., Edward, C., William, H., GwangHoon, G., & Almadidy, A. (2005). Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC. World Journal of Microbiology and Biotechnology, 21, 855–862.

    Article  Google Scholar 

  53. Kivaisi, A. K., & Mtila, M. (1998). Production of biogas from water hyacinth (Eichhornia crassipes) (mart) (solms) in a two-stage bioreactor. World Journal of Microbiology and Biotechnology, 14(1), 125–131. doi:10.1023/A:1008845005155.

    Article  CAS  Google Scholar 

  54. Yao, Y., Luo, Y., Yang, Y., Sheng, H., Li, X., Li, T., Yuan, S., Hua, Z., Shuyan, C., Wenlang, H., Mulan, H., Yubing, R., Jiangli, J., Yali, W., & An, L. (2014). Water free anaerobic co-digestion of vegetable processing waste with cattle slurry for methane production at high total solid content. Energy, 74, 309–313. doi:10.1016/j.energy.2014.06.014.

    Article  CAS  Google Scholar 

  55. Hills, D. J. (1979). Effects of carbon:nitrogen ratio on anaerobic digestion of dairy manure. Agricultural Wastes, 1(4), 267–278. doi:10.1016/0141-4607(79)90011-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author is very grateful to the Ministry of Higher Education (MOHE) of Egypt and Egypt-Japan University of Science and Technology (E-JUST) for providing him financial and technical support (Ph.D. scholarship) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Farghaly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farghaly, A., Tawfik, A. Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions. Appl Biochem Biotechnol 181, 142–156 (2017). https://doi.org/10.1007/s12010-016-2204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2204-7

Keywords

Navigation