Skip to main content

Advertisement

Log in

Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The anaerobic co-digestion of the most abundant organic wastes was investigated for enhancing biogas production rate and quality. The used feedstock was composed of fruit and vegetable waste (FVW), waste-activated sludge (WAS), olive mill wastewater (OMW) and cattle manure (CM). A considerable methane yield of 340 L/kg volatile solid (VS) inlet was obtained using single-stage anaerobic sequencing batch reactors (ASBRs). However, VS biodegradation becomes difficult at high organic loading rate (OLR). Therefore, a continuously stirred tank reactor (CSTR) was integrated to the ASBR for waste pre-digestion. The dark fermentation leads to the improvement of organic matter solubilisation and bio-hydrogen productivity, reaching 0.73 L/L/day (H2 content of 49.8%) when pH decreased to 5.8. Therefore, methane productivity increased from 0.6 to 1.86 L/L/day in the methanogenic reactor with a better VS biodegradation (91.1%) at high OLR. Furthermore, the bio-hythane production was performed through a controlled biogas recirculation from the dark fermentation stage into the methaniser to reach 842.4 L/kg VS inlet. The produced biogas was composed of 8% H2, 28.5% CO2 and 63.5% CH4. Therefore, two-stage anaerobic co-digestion with coupled CH4 and H2 recuperation may be an important contribution for pollution control and high-rate bioenergy recovery (21.1 kJ/g VS inlet) from organic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Juhaimi FY, Hamad SH, Al-Ahaideb IS, Al-Otaibi MM, Ghafoor K, Abbasi T, Abbasi SA (2014) Biogas production through the anaerobic digestion of date palm. BioResources 9:3323–3333

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Aslanzadeh S, Rajendran K, Taherzadeh MJ (2014) A comparative study between single- and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Interna Biodeter Biodeg 95:181–188

    Article  CAS  Google Scholar 

  • Asses N, Ayed L, Bouallagui H, Sayedi S, Hamdi M (2009) Biodegradation of different molecular mass polyphenols derived from olive mill wastewaters by Geotrichum candidum. Inter Biodeter Biodeg 63:407–413

    Article  CAS  Google Scholar 

  • Azeem K, Muhammad A, Muzammil A, Tariq M, Lorna D (2011) The anaerobic digestion of solid organic waste. Wast Manag 31:1737–1744

    Article  CAS  Google Scholar 

  • Björnsson L, Murto M, Mattiasson B (2000) Evaluation of parameters for monitoring an anaerobic co-digestion. Appl Microbiol Biotechnol 54:844–849

    Article  Google Scholar 

  • Bolzonella D, Pavan P, Battistoni P, Cecchi F (2005) Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochem 40:1453–1460

    Article  CAS  Google Scholar 

  • Borowski S, Szopa J-S (2007) Experiences with the dual digestion of municipal sewage sludge. Bioress Technol 98:1199–1207

    Article  CAS  Google Scholar 

  • Bouallagui H, Haouari O, Touhami Y, Bencheikh R, Marouani L, Hamdi M (2004) Effect of temperature on the energy production from anaerobic digestion of fruitand vegetable waste. Process Biochem 39:2143–2148

    Article  CAS  Google Scholar 

  • Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995

    Article  CAS  Google Scholar 

  • Bouallagui H, Lahdheb H, Ben Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environment Manag 90:1844–1849

    Article  CAS  Google Scholar 

  • Bouallagui H, Marouani L, Hamdi M (2010) Performances comparison between laboratory and full-scale anaerobic digesters treating a mixture of primary and waste activated sludge. Resources Conserv Recycl 55:29–33

    Article  Google Scholar 

  • Budych-Gorzna M, Smoczynski M, Popiel-Oleskowicz P (2016) Enhancement of biogas production at municipal wastewater treatment plant by co-digestion with poultry industry waste. Appl Energy 161:387–394

    Article  CAS  Google Scholar 

  • Callaghan F-J, Wase D-A-J, Thayanithy K-S, Forster CF (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 27:71–77

    Article  Google Scholar 

  • Cano R, Neilfa A, Fdz-Polanco M (2014) Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study. Bioresour Tchnol 168:14–22

    Article  CAS  Google Scholar 

  • Carlini M, Mosconi EM, Castellucci S, Villarini M, Colantoni A (2017) An economical evaluation of anaerobic digestion plants fed with organic agro-industrial waste. Energies 10:1165. https://doi.org/10.3390/en10081165

    Article  Google Scholar 

  • Cavinato C, Pavan P, Bolzonella D, Cecchi F (2008). Single phase extreme thermophilic (70 °C) anaerobic co-digestion of sewage sludge and organic fractionof municipal solid waste. In: proceedings of the fifth ISAD-SW, 24–28 May, Hammamet, Tunisia

  • Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2012) Optimization of two-phase thermophilic anaerobic digestion of biowaste for bio-hythane production through reject water recirculation. Bioresour Technol 102:8605–8611

    Article  CAS  Google Scholar 

  • Chen Y, Jiang S, Yuan H, Zhou Q, Gu G (2007) Hydrolysis and acidification of waste activated sludge at different pH. Water Res 41:683–689

    Article  CAS  Google Scholar 

  • Dammak I, Neves M, Isoda H, Sayadi S, Nakajima M (2016) Recovery of polyphenols from olive mill wastewater using drowning-out crystallization based separation process. Bioressour Technol 34:326–335

    CAS  Google Scholar 

  • Dareioti M-A, Dokianakis S-N, Stamatelatou K, Zafiri C, Kornaros M (2010) Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manag 30:1841–1848

    Article  CAS  Google Scholar 

  • Ennouri H, Miladi B, Zahedi D-S, Fernández Güelfo L-A, Solera R, Hamdi M, Bouallagui H (2016) Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour Technol 214:184–191

    Article  CAS  Google Scholar 

  • Ennouri et al. 2018 in the text should be changed with Ennouri et al 2016 which wa cited in the list of references as Ennouri H, Miladi B, Zahedi D-S, Fernández Güelfo L-A, Solera R, Hamdi M, Bouallagui H (2016). Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour Technol 214: 184-191

  • Farhat A, Manai I, Gtari M, Bouallagui H (2018). Effect of enhancing nutrient balance in anaerobic digester feedstock by co-substrate addition on the microbial diversity and energy production from municipal sewage sludge. J Biosci Bioeng https://doi.org/10.1016/j.jbiosc.2018.04.014

  • Fernandez C, Cuetos M-J, Martinez E-J, Gomez X (2015) Thermophilic anaerobic digestion of cheese whey: coupling H2 and CH4 production. Biomass Bioenergy 81:55–62

    Article  CAS  Google Scholar 

  • Fu S-F, Xu X-H, Dai M, Yuan X-Z, Guo R-B (2017) Hydrogen and methane production from vinasse using two-stage anaerobic digestion. Proc Safty Environ Prot 107:81–86

    Article  CAS  Google Scholar 

  • Ganesh R, Torrijos M, Sousbie P, Lugardon A, Steyer J-P, Delgenes J-P (2014) Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Manag 34:875–885

    Article  CAS  Google Scholar 

  • Gebrezgabher S-A, Meuwissen M-P-M, Prins B-A-M, Oude Lansink A-G (2010) Economic analysis of anaerobic digestion—a case of green power biogas plant in the Netherland. NJAS-Wagening J Life Sci 57:109–115

    Article  Google Scholar 

  • Gioannis G-D, Muntoni A, Polettini PR, Spiga D (2017) Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag 68:595–602

    Article  CAS  Google Scholar 

  • Gómez X, Cuetos M-J, Moran A, Garcia A-I (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes conditions for mixing and evaluation of the organic loading rate. Renew Ener 31:2017–2024

    Article  CAS  Google Scholar 

  • Haider M-R, Zeshan Yousaf S, Malik R-N, Visvanathan C (2015) Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour Technol 190:451–457

    Article  CAS  Google Scholar 

  • Handous N, Gannoun H, Hamdi M, Bouallagui H (2017). Two-stage anaerobic digestion of meat processing solid wastes: methane potential improvement with wastewater addition and solid substrate fermentation. Waste Biomass Valor DOI https://doi.org/10.1007/s12649-017-0055-2

  • Hartmann H, Ahring B-K (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39:1543–1552

    Article  CAS  Google Scholar 

  • Heo N-H, Park S-C, Lee J-S, Kang H, Park D-H (2003) Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge. Appel Biochem Biotechnol 105–108:567–567

    Article  Google Scholar 

  • Hidalgo D, Marti-Marroquin J-M, Sastre E (2014) Single-phase and two phase anaerobic co-digestion of residues from the treatment process of waste vegetable oil and pig manure. Bioenergy Res 7:670–680

    Article  Google Scholar 

  • Justino C-I, Freitas R-P, Rocha-Santos T-A, Panteleitchouk T-S, Duarte A-C (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicol 21:615–629

    Article  CAS  Google Scholar 

  • Lahdheb H, Bouallagui H, Hamdi M (2009) Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour Technol 100:1555–1560

    Article  CAS  Google Scholar 

  • Li W, Loh K-C, Zhang J, Tong Y-W, Dai Y (2018) Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Appl Energy 209:400–408

    Article  CAS  Google Scholar 

  • Lin J, Zuo J, Gan L, Li P, Liu F, Wang K, Chen L, Gan H (2011) Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci 23:1403–1408

    Article  CAS  Google Scholar 

  • Lissens G, Vandevivere P, De Baere L, Biey E-M, Verstrae W (2001) Solid waste digesters: process performance and practice for municipal solid waste digestion. Water Sci Technol 44:91–102

    Article  CAS  Google Scholar 

  • Maranon E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez X, García M-M (2012) Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag 32:1821–1825

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Cecchi F, Llabrés P, Pavan P (1992) Anaerobic digestion of the Barcelona central food market organic wastes: plant design and feasibility study. Bioresour Technol 42:33–42

    Article  CAS  Google Scholar 

  • McNamara C-J, Anastasiou C-C, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeter Biodeg 61:127–134

    Article  CAS  Google Scholar 

  • Menardo S, Balsari P (2012) An analysis of the energy potential of anaerobic digestion of agricultural by-products and organic waste. Bioenerg Res 5:759–767

    Article  Google Scholar 

  • Misi S-N, Forster C-F (2001) Batch co-digestion of multi-components agro-wastes. Bioresour Technol 80:19–28

    Article  CAS  Google Scholar 

  • Montanès Alonso R, Solera del Rio R, Perez Garcia M (2016) Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass Bioenergy 93:107–115

    Article  CAS  Google Scholar 

  • Morin P, Marcos B, Moresoli C, Laflamme CB (2010) Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada. Appl Energy 87:275–283

    Article  CAS  Google Scholar 

  • Moukazis I, Pellera F-M, Gidarakos E (2018) Slaughterhouse by-products treatment using anaerobic digestión. Waste Manag 71:652–662

    Article  CAS  Google Scholar 

  • Nasr N, Elbeshbishy E, Hafez H, Nakhla G, E-l H, Naggar M (2012) Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol 111:122–126

    Article  CAS  Google Scholar 

  • Nathao C, Sirisukpoka U, Pisutpaisal N (2013) Production of hydrogen and methane by one and two stage fermentation of foodwaste. Int J Hydrogen Energy 38:15764–15769

    Article  CAS  Google Scholar 

  • Parawira W, Read J-S, Mattiasson B, Björnsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50

    Article  CAS  Google Scholar 

  • Porpatham E, Ramesh A, Nagalingam B (2007) Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrog Energy 32:2057–2065

    Article  CAS  Google Scholar 

  • Rajeshwari K-V, Panth D-C, Lata K, Kishore V-V-N (2001) Novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Manag Res 1:292–300

    Article  Google Scholar 

  • Rao MS, Singh SP (2004) Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation. Bioresour Technol 95:173–185

    Article  CAS  Google Scholar 

  • Raynal J, Delgenes JP, Moletta R (1998) Two-phase anaerobic digestion of solid waste by a multiple liquefaction reactors process. Bioresour Technol 65:97–103

    Article  CAS  Google Scholar 

  • Saidi R, Liebgott P-P, Gannoun H, Ben Gaida L, Miladi B, Hamdi M, Bouallagui H, Auria R (2018) Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of Thermotoga maritime. Waste Manag 71:474–484

    Article  CAS  Google Scholar 

  • Schievano A, Tenca A, Lonati S, Manzini E, Adani F (2014) Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass. Appl Energ 124:335–342

    Article  CAS  Google Scholar 

  • Shao X, Peng D, Teng Z, Ju X (2008) Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour Technol 8:3182–3186

    Article  CAS  Google Scholar 

  • Solera R, Romero L-I, Sales D (2002) The evolution of biomass in a two-phase anaerobic treatment process during start-up. Chem Biochem Eng 16:25–29

    CAS  Google Scholar 

  • Stoyanova E, Lundaa T, Bochmann G, Fuchs W (2016). Overcoming the bottlenecks of anaerobic digestion of olive mill solid waste by two stage fermentation. Environ. Technol. https://doi.org/10.1080/09593330.2016.1196736

    Article  CAS  Google Scholar 

  • Tabart J, Kevers C, Sipel A, Pincemail J, Defraigne J-O, Dommes J (2007) Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem 105:1268–1275

    Article  CAS  Google Scholar 

  • Toumi J, Miladi B, Farhat A, Nouira S, Hamdi M, Gtari M, Bouallagui H (2015) Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers. Bioresour Technol 198:141–149

    Article  CAS  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    Article  CAS  Google Scholar 

  • Verrier D, Ray F, Albagnac G (1987) Two-phase methanization of solid vegetable wastes. Biol Wastes 22:163–177

    Article  CAS  Google Scholar 

  • Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digestion of municipal solid waste composed of food waste, waste paper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627

    Article  CAS  Google Scholar 

  • Wang C-C, Chang C-W, Chu C-P, Lee D-J, Chang B-V, Liao C-S (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102:83–92

    Article  CAS  Google Scholar 

  • Wang D, Duan YY, Yang Q, Liu Y, Ni BJ, Wang Q, Zeng G, Li X, Yuan Z (2018a) Free Ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 133:272–281

    Article  CAS  Google Scholar 

  • Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, Chen F, Li X, Yang Q (2018b) Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Res 2018(130):281–290

    Article  CAS  Google Scholar 

  • Yasin M, Wasim M (2011) Anaerobic digestion of buffalo dung, sheep waste and poultry litter for biogas production. J Agric Res 49:73–82

    Google Scholar 

  • Zhang Z-P, Taya J-H, Showa K-Y, Yan R, Liang D-T, Lee D-J, Jiang WJ (2007) Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrog Energy 32:185–191

    Article  CAS  Google Scholar 

  • Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R (2014) Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy 128:175–183

    Article  CAS  Google Scholar 

  • Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, Yang Q (2017) Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag 67:308–314

    Article  CAS  Google Scholar 

  • Zhu H, Stadnyk A, Béland M, Seto P (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 99:5078–5084

    Article  CAS  Google Scholar 

  • Zuo Z, Wub S, Zhang W, Dong R (2014) Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates. Bioresour Technol 162:266–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Ministry of Higher Education and Scientific Research in Tunisia, which has facilitated the carried work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassib Bouallagui.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, A., Miladi, B., Hamdi, M. et al. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Environ Sci Pollut Res 25, 27945–27958 (2018). https://doi.org/10.1007/s11356-018-2796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2796-2

Keywords

Navigation