Skip to main content
Log in

Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fumaric acid as a four-carbon unsaturated dicarboxylic acid is widely used in the food and chemical industries. Food waste (FW), rich in carbohydrates and protein, is a promising potential feedstock for renewable bio-based chemicals. In this research, we investigated the capability of Rhizopus arrhizus RH7-13 in producing fumaric acid from FW. The liquid fraction of the FW (L-FW) was proven to be the best seed culture medium in our research. When it was however used to be fermentation medium, the yield of fumaric acid reached 32.68 g/L, at a volumetric production of 0.34 g/L h. The solid fraction of FW mixed with water (S-FW) could also be used as fermentation medium when a certain amount of glucose was added, and the yield of fumaric acid reached 31.26 g/L. The results indicated that both fractions of FW could be well utilized in fermentation process and it could replace a part of common carbon, nitrogen, and nutrient. The process has an application potential since reducing the costs of raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FW:

food waste

T-FW:

whole food waste (without pretreatment)

L-FW:

liquid portion of food waste

S-FW:

solid portion of food waste mixed with certain amount of water

S-FWG:

glucose with S-FW

TS:

total solid

VS:

volatilizable solid

TOC:

total carbon

TON:

total nitrogen

C/N:

carbon/nitrogen (w/w)

S (%):

sulfur (wt, %)

References

  1. Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion of food waste to energy: a review. Fuel, 134, 389–399.

    Article  Google Scholar 

  2. Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392.

    Article  Google Scholar 

  3. Melikoglu, M., Lin, C. S. K., & Webb, C. (2013). Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 157–164.

  4. Roa Engel, C. A., van Gulik, W. M., Marang, L., van der Wielen, L. A. M., & Straathof, A. J. J. (2011). Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme and Microbial Technology, 48, 39–47.

    Article  CAS  Google Scholar 

  5. Roa Engel, C. A., Straathof, A. J. J., Zijlmans, T. W., van Gulik, W. M., & van der Wielen, L. A. M. (2008). Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 78, 379–389.

    Article  CAS  Google Scholar 

  6. Gu, C., Zhou, Y., Liu, L., Tan, T., & Deng, L. (2013). Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresource Technology, 131, 303–307.

    Article  CAS  Google Scholar 

  7. Deng, Y., Li, S., Xu, Q., Gao, M., & Huang, H. (2012). Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresource Technology, 107, 363–367.

    Article  CAS  Google Scholar 

  8. Tollefson, J. (2008). Advanced biofuels face an uncertain future. Nature, 452, 670–671.

    Article  CAS  Google Scholar 

  9. Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98, 929–935.

    Article  CAS  Google Scholar 

  10. Cekmecelioglu, D., & Uncu, O. N. (2013). Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Management, 33, 735–739.

    Article  CAS  Google Scholar 

  11. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: current perspectives and the way forward. International Journal of Hydrogen Energy, 37, 15616–15631.

    Article  CAS  Google Scholar 

  12. Zhang, C., Su, H., & Tan, T. (2013). Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresource Technology, 145, 10–16.

    Article  CAS  Google Scholar 

  13. Elbeshbishy, E., Hafez, H., Dhar, B. R., & Nakhla, G. (2011). Single and combined effect of various pretreatment methods for biohydrogen production from food waste. International Journal of Hydrogen Energy, 36, 11379–11387.

    Article  CAS  Google Scholar 

  14. Bernstad, A., Malmquist, L., Truedsson, C., & la Cour Jansen, J. (2013). Need for improvements in physical pretreatment of source-separated household food waste. Waste Management, 33, 746–754.

    Article  CAS  Google Scholar 

  15. Xu, Q., Li, S., Huang, H., & Wen, J. (2012). Key technologies for the industrial production of fumaric acid by fermentation. Biotechnology Advances, 30, 1685–1696.

    Article  CAS  Google Scholar 

  16. Liu, S., Nie, K., Zhang, X., Wang, M., Deng, L., Ye, X., Wang, F., & Tan, T. (2014). Kinetic study on lipase-catalyzed biodiesel production from waste cooking oil. Journal of Molecular Catalysis B: Enzymatic, 99, 43–50.

    Article  CAS  Google Scholar 

  17. Zhou, Y., Nie, K., Zhang, X., Liu, S., Wang, M., Deng, L., Wang, F., & Tan, T. (2014). Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresource Technology, 163, 48–53.

    Article  CAS  Google Scholar 

  18. Liu, H., Wang, W., Deng, L., Wang, F., & Tan, T. (2015). High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 186, 348–350.

    Article  CAS  Google Scholar 

  19. Zhen, G., Kun, Z., He, H., Shuang, L., & Ping, W. (2009). Fumaric acid production by Rhizopus sp. Progress in Chemistry, 21, 251–264.

    Google Scholar 

  20. Association, A. P. H. Water Environment Federation (1995). Standard methods for the examination of water and wastewater. Washington, DC.

  21. Li, Z., Deng, L., Lu, J., Guo, X., Yang, Z., & Tan, T. (2010). Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99–125. Chinese Journal of Chemical Engineering, 18, 870–875.

    Article  CAS  Google Scholar 

  22. Xu, Q., Li, S., Fu, Y., Tai, C., & Huang, H. (2010). Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresource Technology, 101, 6262–6264.

    Article  CAS  Google Scholar 

  23. Wen, S., Liu, L., Nie, K. L., Deng, L., Tan, T. W., & Wang, F. (2013). Enhanced fumaric acid production by fermentation of xylose using a modified strain of Rhizopus arrhizus. BioResources, 8, 2186–2194.

    Article  CAS  Google Scholar 

  24. Ieggli, C., Bohrer, D., Do Nascimento, P., & De Carvalho, L. (2011). Determination of sodium, potassium, calcium, magnesium, zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry. Food Chemistry, 124, 1189–1193.

    Article  CAS  Google Scholar 

  25. Zhou, Z., Du, G., Hua, Z., Zhou, J., & Chen, J. (2011). Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technology, 102, 9345–9349.

    Article  CAS  Google Scholar 

  26. Ding, Y., Li, S., Dou, C., Yu, Y., & Huang, H. (2011). Production of fumaric acid by Rhizopus oryzae: role of carbon–nitrogen ratio. Applied Biochemistry and Biotechnology, 164, 1461–1467.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Amoy Industrial Biotechnology R&D and Pilot Conversion Platform (No. 3502Z20121009), the international cooperation projects of Antrodia cinnamomea (No. 2015DFT30050), and the Ministry of Science and Technology Innovation Fund for Small and medium-sized enterprises (No. 14C26213511838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ma, J., Wang, M. et al. Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13 . Appl Biochem Biotechnol 180, 1524–1533 (2016). https://doi.org/10.1007/s12010-016-2184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2184-7

Keywords

Navigation