Skip to main content
Log in

Production of Fumaric Acid by Rhizopus oryzae: Role of Carbon–Nitrogen Ratio

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytosolic fumarase, a key enzyme for the accumulation of fumaric acid in Rhizopus oryzae, catalyzes the dehydration of l-malic acid to fumaric acid. The effects of carbon–nitrogen ratio on the acid production and activity of cytosolic fumarase were investigated. Under nitrogen limitation stress, the cytosolic fumarase could keep high activity. With the urea concentration decreased from 2.0 to 0.1 g l−1, the cytosolic fumarase activity increased by 300% and the production of fumaric acid increased from 14.4 to 40.3 g l−1 and l-malic acid decreased from 2.1 to 0.3 g l−1. Cytosolic fumarase could be inhibited by substrate analog 3-hydroxybutyric acid. With the addition of 3-hydroxybutyric acid (50 mM) in the fermentation culture, fumaric acid production decreased from 40.3 to 14.1 g l−1 and l-malic acid increased from 0.3 to 5.4 g l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liao, W., Liu, Y., Frear, C., et al. (2004). Bioresource Technology, 99, 5859–5866.

    Article  Google Scholar 

  2. Anon. (2005). Industrial Bioprocessing, 27, 11–11.

    Google Scholar 

  3. Kenealy, W., Zaady, E., Preez, J. C., et al. (1986). Applied and Environmental Microbiology, 52, 128–133.

    CAS  Google Scholar 

  4. Suzuki, T., Sato, M., Yoshida, T., et al. (1984). The Journal of Biological Chemistry, 264, 2581–2586.

    Google Scholar 

  5. Pines, O., Even-Ram, S., Elnathan, N., et al. (1996). Applied Microbiology and Biotechnology, 46, 393–399.

    CAS  Google Scholar 

  6. Knox, C., Sass, E., Neupert, W., et al. (1998). The Journal of Biological Chemistry, 273, 25587–25593.

    Article  CAS  Google Scholar 

  7. Sass, E., Karniely, S., & Pines, O. (2003). The Journal of Biological Chemistry, 278, 45109–45116.

    Article  CAS  Google Scholar 

  8. Regev-Rudzki, N., Battat, E., Goldberg, I., et al. (2009). Molecular Microbiology, 72, 297–306.

    Article  CAS  Google Scholar 

  9. Goldberg, I., Rokem, S. T., & Pines, O. (2006). Journal of Chemical Technology and Biotechnology, 81, 1601–1611.

    Article  CAS  Google Scholar 

  10. Kanarek, L., & Hill, R. L. (1964). The Journal of Biological Chemistry, 239, 4202–4206.

    CAS  Google Scholar 

  11. Genda, T., Watabe, S., & Ozaki, H. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1102–1109.

    Article  CAS  Google Scholar 

  12. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  13. Daum, G., Bohni, P. C., & Schatz, G. (1982). The Journal of Biological Chemistry, 10, 13028–13033.

    Google Scholar 

  14. Moresi, M., Parente, E., Petrucciol, M., et al. (1991). Applied Microbiology and Biotechnology, 36, 35–39.

    Article  CAS  Google Scholar 

  15. Song, P., Li, S., Ding, Y. Y., et al. (2010). Mycological Research. doi:10.1016/j.funbio.2010.10.003.

    Google Scholar 

  16. Peleg, Y., Ayala, B., Scrutton, M. C., et al. (1989). Applied Microbiology and Biotechnology, 28, 69–75.

    Article  Google Scholar 

  17. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., et al. (2000). Journal of Bioscience and Bioengineering, 90, 90347–90380.

    Google Scholar 

  18. Engel, C. A., van Gulik, W., Marang, L., et al. (2010). Enzyme and Microbial Technology, 48, 39–47.

    Article  Google Scholar 

  19. Xu, Q., Li, S., Fu, F. Q., et al. (2010). Bioresource Technology, 101, 6262–6264.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Basic Research Program of China (No. 2009CB724701) and the National Natural Science Foundation of China (No. 20706031, 21076104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Li, S., Dou, C. et al. Production of Fumaric Acid by Rhizopus oryzae: Role of Carbon–Nitrogen Ratio. Appl Biochem Biotechnol 164, 1461–1467 (2011). https://doi.org/10.1007/s12010-011-9226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9226-y

Keywords

Navigation