Skip to main content
Log in

Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kitamoto, D., Morita, T., Fukuoka, T., Konishi, M., & Imura, T. (2009). Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid & Interface Science, 14, 315–328.

    Article  CAS  Google Scholar 

  2. Marchant, R., & Banat, I. M. (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology Letters, 34, 1597–1605.

    Article  CAS  Google Scholar 

  3. Marti, M. E., Colonna, W. J., Patra, P., Zhang, H., Green, C., Reznik, G., Pynn, M., Jarrell, K., Nyman, J. A., Somasundaran, P., Glatz, C. E., & Lamsal, B. P. (2014). Production and characterization of microbial biosurfactants for potential use in oil spill remediation. Enzyme and Microbial Technology, 55, 31–39.

    Article  CAS  Google Scholar 

  4. Xia, W. J., Li, Y., Wang, P., Xiu, J. L., & Dong, H. P. (2012). Characterization of a ther- mophilic and halotolerant Geobacillus pallidus H9 and its application in microbial enhanced oil recovery (MEOR). Annals of Microbiology, 62, 1779–1789.

    Article  CAS  Google Scholar 

  5. Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223, 143–151.

    Article  CAS  Google Scholar 

  6. Castellane, T. C. L., Persona, M. R., Campanharo, J. C., & Lemos, E. G. M. (2015). Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. International Journal of Biological Macromolecules, 74, 515–522.

    Article  CAS  Google Scholar 

  7. Satpute, S. K., Banat, I. M., Dhakephalkar, P. K., Banpurkar, A. G., & Chopade, B. A. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances, 28, 436–450.

    Article  CAS  Google Scholar 

  8. Bertrand, J. L., Ramsay, B. A., Ramsay, J. A., & Chavarie, C. (1990). Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Applied and Environmental Microbiology, 56, 3133–3138.

    CAS  Google Scholar 

  9. Rosenberg, E., & Ron, E. Z. (1999). High- and low-molecular- mass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154–162.

    Article  CAS  Google Scholar 

  10. Whang, L. M., Liu, P. W. G., Ma, C. C., & Cheng, S. S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegration of diesel-contaminated water and soil. Journal of Hazardous Materials, 151, 155–163.

    Article  CAS  Google Scholar 

  11. Willumsen, P. A. E., & Karlson, U. (1997). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactant and bioemulsifiers. Biodegration, 7, 415–423.

    Article  Google Scholar 

  12. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51, 553–563.

    Article  CAS  Google Scholar 

  13. Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio and materials industry. Chemical Society Reviews, 38, 2434–2446.

    Article  CAS  Google Scholar 

  14. Ma, H. G., Liu, M. M., Li, S. Y., Wu, Q., Chen, J. C., & Chen, G. Q. (2013). Application of polyhidroxy alkanoate (PHA) synthesis regulatory protein PhaR as a bio-surfactant and bacterial agent. (2013). Journal of Biotechnology, 166, 34–41.

    Article  CAS  Google Scholar 

  15. Boulton, C., Ratledge, C. (1987). In Biosurfactants and Biotechnology, ed. Kosaric, N., Cairns, W.L., Gray, N.C.C., Dekker, M. New York, 47–87.

  16. Robert, M., Mercade, M. E., Bosch, M. P., Parra, J. L., Espuny, M. J., Manresa, M. A., & Guinea, J. (1989). Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T. Biotechnology Letters, 11, 871–874.

    Article  CAS  Google Scholar 

  17. Yang, J. E., Choi, Y. J., Lee, S. J., Kang, K. H., Lee, H., Oh, Y. H., Lee, S. H., Park, S. J., & Lee, S. Y. (2014). Metabolic engineering of Escherichia coli for biosynthesis of poly (3-hidroxybutyrate-co-3-hidroxyvalerate) from glucose. Applied Microbiology and Biotechnology, 98, 95–104.

    Article  CAS  Google Scholar 

  18. Soberón-Chavez, G., Le’pine, F., & De’ziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 68, 718–725.

    Article  Google Scholar 

  19. Di Martino, C., Catone, M. V., López, N. I., & Iustman, L. J. R. (2014). polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in Pseudomonas sp. KA-08. Current Microbiology, 68, 735–742.

    Article  Google Scholar 

  20. Steinbüchel, A., Aerts, K., Liebergesell, M., Wieczorek, R., Babel, W., Föllner, C., Madkour, M. H., Mayer, F., Pieper-Fürst, U., Pries, A., & Valentin, H. E. (1995). Considerations on the structure and biochemistry of bacterial polyhydroxy alkanoic acid inclusions. Canadian Journal of Microbiology, 41, 94–105.

    Article  Google Scholar 

  21. Lopes, E. M., Castellane, T. C. L., Moretto, C., Lemos, E. G. M., & Souza, J. A. M. (2014). Emulsification properties of bioemulsifiers produced by wild-type and mutant Bradyrhizobium elkani strains. Journal of Bioremediation & Biodegradation, 5, 1–6.

    Google Scholar 

  22. Burdon, K. L. (1946). Fatty materials in bacteria and fungi revealed by staining dried, fixed slide preparation. Journal of Bacteriology, 52, 665–678.

    CAS  Google Scholar 

  23. Janczarek, M., & Skorupska, A. (2009). Rhizobium leguminosarum bv. Trifoliiros R gene expression is regulated by catabolic repression. FEMS Microbiology Letters, 291, 112–119.

    Article  CAS  Google Scholar 

  24. Velasco, S., Arskold, E., Paese, M., Grage, H., Irastorza, A., Radstrom, P., & Van Niel, E. W. J. (2006). Environmental factors influencing growth of and exopolysaccharide formation by Pedicoccus parvulus 2.6. International Journal of Food Microbiology, 111, 252.

    Article  CAS  Google Scholar 

  25. Killic, N. K., & Donmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. Journal of Hazardous Materials, 154, 1019–1024.

    Article  Google Scholar 

  26. Fernandes Júnior, P. I., Oliveira, P. J., Rumjanek, N. G., & Xavier, G. R. (2011). Poly-β-hydroxybutyrate and exopolysaccharide biosynthesis by bacterial isolates from pigeonpea [Cajanuscajan (L.) Millsp] root nodules. Applied Biochemistry and Biotechnology, 163, 473–484.

    Article  Google Scholar 

  27. Anyanwu, & Chukwudi, U. (2010). Surface activity of extracellular products of a Pseudomonas aeruginosa isolated from petroleum contaminated soil. International Journal of Environmental Sciences, 1, 225–235.

    CAS  Google Scholar 

  28. Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger-Jr, W. T. (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiological Research, 160, 249–255.

    Article  CAS  Google Scholar 

  29. Glazyrina, J., Junne, S., Thiesen, P., Lunkenheimer, K., & Goetz, P. (2008). In situ removal and purification of biosurfactants by automated surface enrichment. Applied Microbiology and Biotechnology, 81, 23–31.

    Article  CAS  Google Scholar 

  30. Illori, M. O., Amobi, C. J., & Odocha, A. C. (2005). Factors affecting biosurfactant production by oil degradading Aeromonas spp. Isolated from a tropical environment. Chemosphere, 61, 985–992.

    Article  Google Scholar 

  31. Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E., et al. (1995). Alasan, a new bioemulsifier from Acinetobacter radioresistens. Applied and Environmental Microbiology, 61, 3240–3244.

    CAS  Google Scholar 

  32. Ghojavand, H., Vahabzadeh, F., Roayaei, E., & Shahraki, A. K. (2008). Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). Journal of Colloid and Interface Science, 342, 172–176.

    Article  Google Scholar 

  33. Silva, N. R. A., Luna, M. A. C., Santiago, A. L. C. M. A., Franco, L. O., Silva, G. K. B., Souza, P. M., Okada, K., Albuquerque, C. D. C., Silva, C. A. A., & Campos-Takaki, G. M. (2014). Biosurfactant and bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International Journal of Molecular Sciences, 15, 15377–15395.

    Article  Google Scholar 

  34. Velázquez-Aradillas, J. C., Toribio-Jiménez, J., del Carmen Ángeles González-Chávez, M., Bautista, F., Cebrián, M. E., Esparza-García, F. J., & Rodríguez-Vázquez, R. (2011). Characterisation of a biosurfactant produced by a Bacillus cereus strain tolerant to cadmium and isolated from green coffee grain. World Journal of Microbiology and Biotechnology, 27, 907–913.

    Article  Google Scholar 

  35. Biria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., SahebghadamLotfi, A., & Amoozegar, M. A. (2009). Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26, 871–878.

    Article  Google Scholar 

  36. Asfora Sarubbo, L., Moura De Luna, J., & De Campos-Takaki, G. M. (2006). Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electronic Journal of Biotechnology, 9, 401–406.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Program of Agricultural Microbiology FCAV/UNESP Campus Jaboticabal and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing a PROAP doctoral scholarship, Post-doctoral National Program (PNPD/CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tereza Cristina Luque Castellane or Lúcia Maria Carareto Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacco, L.P., Castellane, T.C.L., Lopes, E.M. et al. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose. Appl Biochem Biotechnol 178, 990–1001 (2016). https://doi.org/10.1007/s12010-015-1923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1923-5

Keywords

Navigation