Skip to main content
Log in

Functional Validation of Phragmites communis Glutathione Reductase (PhaGR) as an Essential Enzyme in Salt Tolerance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Reed plants (Phragmites communis (Linn.) Trin) are hydrophilic perennial grasses growing in fresh and brackish waters. These plants readily adapt to arid and high salinity conditions; however, their resistance mechanism against abiotic stresses, especially high salinity, is largely unknown. In the present study, we cloned a glutathione reductase gene from P. communis and investigated its role in conferring salt tolerance in reed plants. The expression of PhaGR at the transcriptional level was affected by multiple abiotic stresses including NaCl, Cd2+, heat, cold, PEG 6000, and abscisic acid (ABA). Furthermore, NaCl and Cd2+ could increase its expressions at the translational level. NaCl and Cd2+ also increased the biosynthesis of soluble protein and reduced glutathione (GSH). Reed seedlings that were challenged with NaCl showed higher levels of GR activities, which corroborated our gene expression data. The increase in GR possibly increased the salt tolerance of reed plants through GSH production. Thus, PhaGR is a potential target gene in improving the salt tolerance of crops through genetic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GSH:

Reduced glutathione

ORF:

Open reading frame

PhaGRC:

Phragmites communis glutathione reductase

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

GR:

Glutathione reductase

GSSG:

Oxidized glutathione

References

  1. Vij, S., & Tyagi, A. K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal, 5, 361–380.

    Article  CAS  Google Scholar 

  2. Sreenivasulu, N., Sopory, S. K., & Kavi Kishor, P. B. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388, 1–13.

    Article  CAS  Google Scholar 

  3. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

    Article  CAS  Google Scholar 

  4. Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Article  CAS  Google Scholar 

  5. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17, 287–291.

    Article  CAS  Google Scholar 

  6. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  CAS  Google Scholar 

  7. Zhang, J. L., & Shi, H. (2003). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1–22.

    Article  Google Scholar 

  8. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  9. Tripathy, B. C., & Oelmüller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, 7, 1621–1633.

    Article  CAS  Google Scholar 

  10. Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8(4), e23681.

    Article  Google Scholar 

  11. Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 35, 259–270.

    Article  CAS  Google Scholar 

  12. Xu, J., Duan, X., Yang, J., Beeching, J. R., & Zhang, P. (2013). Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology, 161, 1517–1528.

    Article  CAS  Google Scholar 

  13. Lin, K. H., & Puu, S. F. (2010). Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biologia Plantarum, 54, 664–670.

    Article  CAS  Google Scholar 

  14. Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204–212.

    Article  CAS  Google Scholar 

  15. Han, R. M., Zhang, J. P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17, 2140–2160.

    Article  CAS  Google Scholar 

  16. Havaux, M., Ksas, B., Szewczyk, A., Rumeau, D., Franck, F., Caffarri, S., & Triantaphylidès, C. (2009). Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biology, 9, 130.

    Article  Google Scholar 

  17. Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: their role in stress defense. Journal of Genetics, 85, 237–254.

    Article  CAS  Google Scholar 

  18. Takahashi, R., Nishio, T., Ichizen, N., & Takano, T. (2007). High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress. Plant Cell Reports, 26, 1673–1679.

    Article  CAS  Google Scholar 

  19. Takahashi, R., Liu, S., & Takano, T. (2007). Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany, 58, 4387–4395.

    Article  CAS  Google Scholar 

  20. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  21. Rao, M. V., Hale, B. A., & Ormrod, D. P. (1995). Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes). Plant Physiology, 109, 421–432.

    CAS  Google Scholar 

  22. Brehe, J. E., & Burch, H. B. (1976). Enzymatic assay for glutathione. Analytical Biochemistry, 74, 189–197.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Madamanchi, N. R., Anderson, J. V., Alscher, R. G., Cramer, C. L., & Hess, J. L. (1992). Purification of multiple isoforms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in O. fumigated pea leaves. Plant Physiology, 100, 138–145.

    Article  CAS  Google Scholar 

  25. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  27. Lee, H., Jo, J., & Son, D. (1998). Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochimica et Biophysica Acta, 1995, 309–314.

    Article  Google Scholar 

  28. Tahmasebi, A., Aram, F., Ebrahimi, M., Mohammadi, D. M., & Ebrahimie, E. (2012). Genome-wide analysis of cytosolic and chloroplastic isoforms of glutathione reductase in plant cells. Plant Omics, 5, 94–102.

    CAS  Google Scholar 

  29. Kataya, A. R., & Reumann, S. (2010). Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signaling & Behavior, 5, 171–175.

    Article  CAS  Google Scholar 

  30. Peerzada, Y. Y., Khalid Ul R. H., Ruby C., & Parvaiz A. (2012) Role of glutathione reductase in plant abiotic stress. Abiotic Stress Responses in Plants, 149–158.

  31. Foyer, C., Lelandais, M., Galap, C., & Kunert, K. J. (1991). Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiology, 97, 863–872.

    Article  CAS  Google Scholar 

  32. Mullineaux, P. M., & Creissen, G. P. (1997). Glutathione reductase: regulation and role in oxidative stress. In J. G. Scandalios (Ed.), Oxidative stress and the molecular biology of antioxidants (pp. 667–713). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  33. Lascano, H. R., Gómez, L. D., Casano, L. M., & Trippi, V. S. (1998). Changes in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiology and Biochemistry, 36, 321–329.

    Article  CAS  Google Scholar 

  34. Romero-Puertas, M. C., McCarthy, I., Gómez, M., Sandalio, L. M., Corpas, F. J., Del Río, L. A., & Palma, J. M. (2004). Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant, Cell and Environment, 27, 1135–1148.

    Article  CAS  Google Scholar 

  35. Contour-Ansel, D., Torres-Franklin, M. L., De Carvalho, M. H. C., & Arcy-Lameta, A. (2006). Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Annals of Botany, 98, 1279–1287.

    Article  CAS  Google Scholar 

  36. Liu, Y. J., Yuan, Y., Liu, Y. Y., Liu, Y., Fu, J. J., Zheng, J., & Wang, G. Y. (2012). Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. Journal of Plant Physiology, 169, 183–192.

    Article  CAS  Google Scholar 

  37. Eyidogan, F., & Oz, M. T. (2005). Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologiae Plantarum, 29, 485–493.

    Article  Google Scholar 

  38. Sharma, P., & Dubey, R. S. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as an enzyme protectant. Journal of Plant Physiology, 162, 854–864.

    Article  CAS  Google Scholar 

  39. Kumar, A., & Majeti, N. V. (2014). Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms. Environmental Science and Pollution Research, 21, 8750–8764.

    Article  CAS  Google Scholar 

  40. Diego, A. M., Marco, A. O., Carlos, A. M., & José, C. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49, 69–76.

    Article  Google Scholar 

  41. Gamble, P. E., & Burke, J. J. (1984). Effect of water stress on the chloroplast antioxidant system. Plant Physiology, 76, 615–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31201185, No. 31000128, No. 31370296, No. 30870199), by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2010SW036), and by the Shandong Provincial Natural Science Foundation of China (No. ZR2011CQ013, No. ZR2011CM044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBo Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Sequences of primers used (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Quan, G., Wang, J. et al. Functional Validation of Phragmites communis Glutathione Reductase (PhaGR) as an Essential Enzyme in Salt Tolerance. Appl Biochem Biotechnol 175, 3418–3430 (2015). https://doi.org/10.1007/s12010-015-1514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1514-5

Keywords

Navigation