Skip to main content
Log in

An Efficient Method of Agrobacterium-Mediated Genetic Transformation and Regeneration in Local Indian Cultivar of Groundnut (Arachis hypogaea) Using Grafting

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and l-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L−1, respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

CM:

Co-cultivation media

EM:

Elongation media

GUS:

β-Glucuronidase

HPT:

Hygromycin-phosphotransferase

IAA:

Indole-3-acetic acid

LB:

Luria-Bertani broth

MS:

Murashige and Skoog basal salt media

NAA:

α-Naphthaleneacetic acid

PGR:

Plant growth regulator

RM:

Rooting media

SLM:

Selection media

SM:

Shoot induction media

References

  1. Kumari, A., Kumar, A., Wany, A., Prajapati, G. K., & Pandey, D. M. (2012). Bioinformation, 8, 1211–1219.

    Article  Google Scholar 

  2. Pandey, M. K., Monyo, E., Ozias-Akins, P., Liang, X., Guimarães, P., Nigam, S. N., Upadhyaya, H. D., Janila, P., Zhang, X., Guo, B., Cook, D. R., Bertioli, D. J., Michelmore, R., & Varshney, R. K. (2012). Biotechnology Advances, 30, 639–651.

    Article  CAS  Google Scholar 

  3. Janila, P., Nigam, S. N., Pandey, M. K., Nagesh, P., & Varshney, R. K. (2013). Frontiers in Plant Science, 4, 1–16.

    Article  Google Scholar 

  4. USDA. (2014). World agricultural production; United States Department of Agriculture. Circular series WAP, 4–14, 1–26.

    Google Scholar 

  5. ASG, (2012). Agricultural statistics at a glance (2012) of Agriculture & Co-operation Department, Ministry of Agriculture, Government of India, accessed on 05.01.2014

  6. Singh, S., Thirumalaisamy, P. P., Harish, G., Ram, D., Sushil, S. N., Sinha, A. K., Asre, R., Kapoor, K. S., Satyagopal, K., Jeyakumar, P., Birah, A., Sharma, O. P., Bhagat, S., Verma, P. V., Kumar, S., Chattopadhyay, C., & Yadav, M. S. (2014). Integrated pest management package for groundnut. Quarantine & Storage, Faridabad, Haryana (India): Directorate of Plant Protection.

    Google Scholar 

  7. Shirasawa, K., Bertioli, D.J., Varshney, R.K., Moretzsohn, M.C., Leal-Bertioli, S.C.M., Thudi, M., Pandey, M.K., Rami, J-F., Fonce'ka, D., Gowda, M.V.C., Qin, H., Guo, B., Hong, Y., Liang, X., Hirakawa, H., Tabata, S. and Isobe, S. (2013). DNA Research, 20, 173–184.

  8. Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Trends in Plant Science, 16, 363–371.

    Article  CAS  Google Scholar 

  9. Banjara, M., Zhu, L., Shen, G., Payton, P., & Zhang, H. (2012). Plant Biotechnology Journal, 6, 59–67.

    Article  Google Scholar 

  10. Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J., & Ali, G. M. (2012). Molecular Biotechnology, 50, 129–136.

    Article  CAS  Google Scholar 

  11. Manjulatha, M., Sreevathsa, R., Kumar, A. M., Sudhakar, C., Prasad, T. G., Tuteja, N., & Udayakumar, M. (2014). Molecular Biotechnology, 56, 111–125.

    Article  CAS  Google Scholar 

  12. Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R. N., & Fauquet, C. (2001). Molecular Breeding, 7, 25–33.

    Article  CAS  Google Scholar 

  13. Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W., & Harwood, W. A. (2005). Plant Cell Reports, 23, 780–789.

    Article  CAS  Google Scholar 

  14. Kohli, A., Miro, B. and Twyman, R.M. (2010). in Transgenic crop plants– Principles and development (Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C., eds.), Springer-Verlag, Berlin Heidelberg pp. 201–237.

  15. Harwood, W. A. (2012). Journal of Experimental Botany, 63, 1791–1798.

    Article  CAS  Google Scholar 

  16. Chu, Y., Bhattacharya, A., Wu, C., Knoll, J.E. and Ozias-Akins, P. (2013). In Vitro Cellular and Developmental Biology-Plant, 49, 266–275.

  17. Zhang, J., Boone, L., Kocz, R., Zhang, C., Binns, A. N., & Lynn, D. G. (2000). Chemical Biology, 7, 611–621.

    Article  CAS  Google Scholar 

  18. Sahi, S. V., Chilton, M. D., & Chilton, W. S. (1990). Proceedings of the National Academy of Sciences of the United States of America, 87, 3879–3883.

  19. Yuan, Z. C., Edlind, M. P., Liu, P., Saenkham, P., Banta, L. M., Wise, A. A., Ronzone, E., Binns, A. N., Kerr, K., & Nester, E. W. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 11790–11795.

  20. Anand, A., Uppalapati, S. R., Ryu, C.-M., Allen, S. N., Kang, L., Tang, Y., & Mysore, K. S. (2008). Plant Physiology, 146, 703–715.

    Article  CAS  Google Scholar 

  21. Liu, P., & Nester, E. W. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 4658–4662.

    Article  CAS  Google Scholar 

  22. Nonaka, S., Yuhashi, K.-I., Takada, K., Sugaware, M., Minamisawa, K., & Ezura, H. (2008). New Phytologist, 178, 647–656.

    Article  CAS  Google Scholar 

  23. Yuan, Z. C., Haudecoeur, E., Faure, D., Kerr, K. F., & Nester, E. W. (2008). Cellular Microbiology, 10, 2339–2354.

    Article  CAS  Google Scholar 

  24. Dutt, M., Vasconcellos, M., & Grosser, J. W. (2011). Plant Cell, Tissue and Organ Culture, 107, 79–89.

    Article  CAS  Google Scholar 

  25. Lacroix, B., Zaltsman, A. and Citovsky, V. (2011). in Plant transformation technologies. (Stewart, Jr. C.N., Touraev, A., Citovsky, V., Tzfira, T., eds.), Wiley-Blackwell publication, U.K. pp 3–29.

  26. Tiwari, S., & Tuli, R. (2012). Plant Cell, Tissue and Organ Culture, 109, 111–121.

    Article  CAS  Google Scholar 

  27. Patel, M., Dewey, R. E., & Qu, R. (2013). Plant Cell, Tissue and Organ Culture, 114, 19–29.

    Article  CAS  Google Scholar 

  28. Mishra, A., Tomar, A., Bansal, S., Khanna, V. K., & Garg, G. K. (2008). Molecular Biology Reports, 35, 81–88.

    Article  CAS  Google Scholar 

  29. Jha, B., Sharma, A., & Mishra, A. (2011). Molecular Biology Reports, 38, 4823–4832.

    Article  CAS  Google Scholar 

  30. Jha, B., Lal, S., Tiwari, V., Yadav, S., & Agarwal, P. (2012). Marine Biotechnology, 14, 782–792.

    Article  CAS  Google Scholar 

  31. Joshi, M., Jha, A., Mishra, A., & Jha, B. (2013). PLoS ONE, 8(8), e71136. doi:10.1371/journal.pone.0071136.

    Article  Google Scholar 

  32. Singh, N., Mishra, A., & Jha, B. (2014). Marine Biotechnology, 16, 321–332.

    Article  CAS  Google Scholar 

  33. Singh, N., Mishra, A., & Jha, B. (2014). Gene, 547, 119–125.

    Article  CAS  Google Scholar 

  34. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  35. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  36. Radhakrishnan, T., Murthy, T. G. K., Chandran, K., & Bandyopadhyay, A. (2000). Biologia Plantarum, 43, 447–450.

    Article  CAS  Google Scholar 

  37. Sharma, K. K., & Anjaiah, V. (2000). Plant Science, 159, 7–19.

    Article  CAS  Google Scholar 

  38. Tiwari, S., & Tuli, R. (2008). Plant Cell, Tissue and Organ Culture, 92, 15–24.

    Article  Google Scholar 

  39. Pan, X., Welti, R., & Wang, X. (2010). Nature Protocols, 5, 986–992.

    Article  CAS  Google Scholar 

  40. Gupta, V., Kumar, M., Brahmbhatt, H., Reddy, C. R. K., Seth, A., & Jha, B. (2011). Plant Physiology and Biochemistry, 49, 1259–1263.

    Article  CAS  Google Scholar 

  41. Singh, N., Mishra, A., Joshi, M., & Jha, B. (2010). Plant Cell, Tissue and Organ Culture, 103, 1–6.

    Article  Google Scholar 

  42. Joshi, M., Mishra, A., & Jha, B. (2011). Industrial Crops and Products, 33, 67–77.

    Article  CAS  Google Scholar 

  43. Chaturvedi, A. K., Mishra, A., Tiwari, V., & Jha, B. (2012). Gene, 499, 280–287.

    Article  CAS  Google Scholar 

  44. Pandey, S., Mishra, A., Patel, M. K., & Jha, B. (2013). Applied Biochemistry and Biotechnology, 171, 1–9.

    Article  CAS  Google Scholar 

  45. Tiwari, V., Chaturvedi, A. K., Mishra, A., & Jha, B. (2014). Plant and Cell Physiology, 55, 201–217.

    Article  CAS  Google Scholar 

  46. Asif, M. A., Rashid, U., Ali, G. M., Arif, A., & Nazir, F. (2011). Molecular Biotechnology, 49, 250–256.

    Article  CAS  Google Scholar 

  47. Livingstone, D. M., & Birch, R. G. (1999). Molecular Breeding, 5, 43–51.

    Article  Google Scholar 

  48. Qin, H., Gu, Q., Zhang, J., Sun, L., Kuppu, S., Zhang, Y., Burow, M., Payton, P., Blumwald, E., & Zhang, H. (2011). Plant and Cell Physiology, 52, 1904–1914.

  49. Olhoft, P. M., Flagel, L. E., Donovan, C. M., & Somers, D. A. (2003). Planta, 216, 723–735.

    CAS  Google Scholar 

  50. Petri, C., Webb, K., Hily, J. M., Dardick, C., & Scorza, R. (2008). Molecular Breeding, 22, 581–591.

    Article  CAS  Google Scholar 

  51. Mannan, A., Syed, T. N., & Mirza, B. (2009). Pakistan Journal of Botany, 41, 3239–3246.

    CAS  Google Scholar 

  52. Egnin, M., Mora, A. and Prakash, C.S. (1998). In Vitro Cellular and Developmental Biology-Plant, 34, 310–318.

  53. Charles, T. C., & Nester, E. W. (1993). Journal of Bacteriology, 175, 6614–6625.

    CAS  Google Scholar 

  54. Uranbey, S., Sevimay, C. S., Kaya, M. D., Ipek, A., Sancak, C., Basalma, D., Er, C., & Ozcan, S. (2005). Biologia Plantarum, 49, 53–57.

    Article  Google Scholar 

  55. Nester, E. W. (2000). Molecular Plant Pathology, 1, 87–90.

    Article  CAS  Google Scholar 

  56. Swathi-Anuradha, T., Jami, S. K., Datla, R. S., & Kirti, P. B. (2006). Journal of Biosciences, 31, 235–246.

    Article  Google Scholar 

  57. Dodo, H. W., Konan, K. N., Chen, F. C., Egnin, M., & Viquez, O. M. (2008). Plant Biotechnology Journal, 6, 135–145.

    Article  CAS  Google Scholar 

  58. Still, P. E., Plata, M. I., Campbell, R. J., Bueno, L. C., Chichester, E. A., & Niblett, C. L. (1987). Plant Cell, Tissue and Organ Culture, 9, 37–43.

    Article  Google Scholar 

  59. Jin, S., Liang, S., Zhang, X., Nie, Y., & Guo, X. (2006). Plant Cell, Tissue and Organ Culture, 85, 181–185.

    Article  Google Scholar 

  60. Chakraborti, D., Sarkar, A., & Das, S. (2006). Plant Cell, Tissue and Organ Culture, 86, 117–123.

    Article  Google Scholar 

  61. Ballester, A., Cervera, M., & Peńa, L. (2008). Plant Cell Reports, 27, 1005–1015.

    Article  CAS  Google Scholar 

  62. Belide, S., Hac, L., Singh, S. P., Green, A. G., & Wood, C. C. (2011). Plant Methods, 7, 12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No.: PRIS- 119/14. The financial support received from Council of Scientific and Industrial Research (CSIR), New Delhi [SIMPLE: BSC0109 and PMSI: BSC0117] is thankfully acknowledged. VT and AKC are thankful to CSIR for Junior and Senior Research Fellowships. Dr. Siddharth Tiwari, National Agri-Food Biotechnology Institute, Mohali, India, is acknowledged for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash Mishra or Bhavanath Jha.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, V., Chaturvedi, A.K., Mishra, A. et al. An Efficient Method of Agrobacterium-Mediated Genetic Transformation and Regeneration in Local Indian Cultivar of Groundnut (Arachis hypogaea) Using Grafting. Appl Biochem Biotechnol 175, 436–453 (2015). https://doi.org/10.1007/s12010-014-1286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1286-3

Keywords

Navigation