Skip to main content
Log in

Treatment of Phenolics, Aromatic Hydrocarbons, and Cyanide-Bearing Wastewater in Individual and Combined Anaerobic, Aerobic, and Anoxic Bioreactors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic–aerobic–anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, W., Ma, W., Han, H., Li, H., & Yuan, M. (2011). Bioresource Technology, 102, 2441–2447.

    Article  CAS  Google Scholar 

  2. Lai, P., Zhao, H., Zeng, M., & Ni, J. (2009). Journal of Hazardous Material, 162, 1423–1429.

    Article  CAS  Google Scholar 

  3. Marañón, E., Vázquez, I., & Rodríguez, J. (2008). Water Air Soil Pollution, 192, 155–164.

    Article  Google Scholar 

  4. Vazquez, I., Rodrıguez, J., Maraon, E., Castrillon, L., & Fernandez, Y. (2006). Journal of Hazardous Matererials, 137, 1681–1688.

    Article  CAS  Google Scholar 

  5. Wang, W., & Han, H. (2012). Bioresource Technology, 103, 95–100.

    Article  CAS  Google Scholar 

  6. Park, D., Mo, Y., Sung, D., & Moon, J. (2008). Chemical Engineering Journal, 143, 141–146.

    Article  CAS  Google Scholar 

  7. Kumar, M. S., Vaidya, A. N., Shivaraman, N., & Bal, A. S. (2000). Environmental Engineering Science, 17, 221–226.

    Article  CAS  Google Scholar 

  8. Lai, P., Zhao, H., Ye, Z., & Ni, J. R. (2008). Process Biochemistry, 43, 229–237.

    Article  CAS  Google Scholar 

  9. Bajaj, M., Gallert, C., & Winter, J. (2009). Biochemical Engineering Journal, 46, 205–209.

    Article  CAS  Google Scholar 

  10. Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Journal of Hazardous Materials, 163, 1–11.

    Article  Google Scholar 

  11. Zaher, U., Moussa, M. S., Widyatmika, I. N., Steen, P., Gijzen, H. J., & Vanrolleghem, P. (2006). Water Science and Technology, 54, 129–137.

    Article  CAS  Google Scholar 

  12. Li, Y., Gu, G., Zhao, J., & Yu, H. (2001). Process Biochemistry, 37, 81–86.

    Article  CAS  Google Scholar 

  13. Bai, Y., Sun, Q., Zhao, C., & Wen, D. (2009). Environmetnal Biotechnology, 82, 963–973.

    CAS  Google Scholar 

  14. Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Journal of Environmental Sciences, 20, 1508–1513.

    Article  CAS  Google Scholar 

  15. Fedorak, P. M., & Hrudey, S. E. (1989). Water Science and Technology, 21, 67–76.

    CAS  Google Scholar 

  16. Shieh, W. K., & Richards, D. J. (1988). Journal of Environmental Engineering, 114, 639–654.

    Article  CAS  Google Scholar 

  17. Amor, L., Eiroa, M., Kennes, C., & Veiga, M. C. Ã. (2005). Water Research, 39, 2915–2920.

    Article  CAS  Google Scholar 

  18. Flores, E. R., Iniestra-gonza, M., Field, J. A., Olguı, P., & Puig-grajales, L. (2003). Jouranl of Environmental Engineering, 129, 999–1006.

    Article  Google Scholar 

  19. Fetzner, S. (1998). Applied Microbiology and Biotechnology, 49, 237–250.

    Article  CAS  Google Scholar 

  20. Chakraborty, S., & Veeramani, H. (2006). Process Biochemistry, 41, 96–105.

    Article  CAS  Google Scholar 

  21. Vazquez, I., Rodrıguez, J., Maranon, E., Castrillnon, E., & Fernandez, D. (2006). Journal of Hazardous Materials, 137, 1773–1780.

    Article  CAS  Google Scholar 

  22. El-Deeb, B. A. (2006). World Journal of Microbiology and Biotechnology, 16, 1068–1077.

    CAS  Google Scholar 

  23. Mao, Y., Zhang, X., & Xia, X. (2010). Journal of Industrial Microbiology, 37, 927–934.

    Article  CAS  Google Scholar 

  24. Felföldi, T., Székely, A. J., Gorál, R., Barkács, K., Scheirich, G., & András, J. (2010). Bioresource Technology, 101, 3406–3414.

    Article  Google Scholar 

  25. Mo, Y., Sung, D., Park, C., Park, D., & Moon, J. (2010). Water Research, 45, 1267–1279.

    Google Scholar 

  26. Saravanan, P., Pakshirajan, K., & Saha, P. (2009). Journal of Hazardous Materials, 162, 476–48.

    Article  CAS  Google Scholar 

  27. Khoury, N., Dott, W., & Peter, K. (1992). Applied Microbiology and Biotechnology, 37, 524–528.

    CAS  Google Scholar 

  28. APHA (2005). Standard methods for examination of water and wastewater examination, 21 st Ed. Washington DC.

  29. Zhu, S., Liu, D., Fan, L., & Ni, J. (2008). Journal of Hazardous Materials, 160, 289–294.

    Article  CAS  Google Scholar 

  30. Aislabie, J., Bej, A. K., Hurst, H., Rothenburger, S., & Atlas, R. M. (1990). Applied and Environmental Microbiology, 56, 345–351.

    CAS  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  32. Sharma, N. K., Philip, L., & Murty, B. S. (2012). Bioresource Technology, 121, 263–273.

    Article  CAS  Google Scholar 

  33. Farooqi, I. H., Basheer, F., & Ahmad, T. (2008). Global NEST Journal, 10, 39–46.

    Google Scholar 

  34. Licht, D., Johansen, S. S., Arvin, E., & Ahring, B. K. (1997). Applied Microbiology and Biotechnology, 47, 167–172.

    Article  CAS  Google Scholar 

  35. Ramakrishnan, A., & Gupta, S. K. (2006). Journal of Hazardous Materials, 137, 1488–1495.

    Article  CAS  Google Scholar 

  36. Yongmei, L. I., Wenshu, L. I., & Guowei, G. U. (2007). Frontiers of Environmental Science Engineering China, 1(4), 493–497.

    Article  Google Scholar 

  37. Fedorak, P. M., & Hrudey, S. E. (1987). Water Science & Technology, 19, 219–228.

    CAS  Google Scholar 

  38. Acuña-Argüelles, M. E., Olguin-Lora, P., & Razo-Flores, E. (2003). Biotechnology Letters, 25(7), 559–564.

    Article  Google Scholar 

  39. Fallon, R. D. (1992). Applied and Environmental Microbiology, 58(9), 3163–3164.

    CAS  Google Scholar 

  40. Naveen, D., Majumder, C. B., Mondal, P., & Shubha, D. (2011). Research Journal of Chemical Sciences, 1(7), 15–21.

    Google Scholar 

  41. Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Bioresource Technology, 99, 8553–8558.

    Article  CAS  Google Scholar 

  42. Yao, H., Ren, Y., Wei, C., & Yue, S. (2011). Water SA, 37(1), 15–20.

    Article  CAS  Google Scholar 

  43. Jianlong, W., Xiangchun, Q., Liping, H., Yi, Q., & Hegemann, W. (2002). Water Research, 36, 2288–2296.

    Article  Google Scholar 

  44. Ozturk, A., & Abdullah, M. I. (2006). Science of the Total Environment, 358, 137–142.

    Article  Google Scholar 

  45. Ravikumar, S., Gokulakrishnan, R., & Parimala, P. S. (2011). International journal of current Research, 3(7), 96–100.

    Google Scholar 

  46. Banerjee, A., & Ghoshal, A. K. (2010). Bioresource Technology, 101(14), 5501–5507.

    Article  CAS  Google Scholar 

  47. Semple, K. T., & Cain, R. B. (1997). FEMS Microbiology Letters, 152, 133–139.

    Article  CAS  Google Scholar 

  48. Gijzen, H. J., Bernal, E., & Ferrer, H. (2000). Water Research, 34, 2447–2454.

    Article  CAS  Google Scholar 

  49. Haghighi-Podeh, M. R., & Siyahati, A. G. (2000). Water Science & Technology, 42(3), 125–130.

    CAS  Google Scholar 

  50. Kang, M. H., & Park, J. M. (1997). Journal of Chemical Technology and Biotechnology, 69, 226–230.

    Article  CAS  Google Scholar 

  51. Neufeld, R., Greefield, J., & Rieder, B. (1986). Water Research, 20(5), 633–642.

    Article  CAS  Google Scholar 

  52. González-blanco, G., Beristain-cardoso, R., Cuervo-lópez, F., Cervantes, F. J., & Gómez, J. (2012). Bioresource Technology, 103, 48–55.

    Article  Google Scholar 

  53. O’Connor, O. W., & Young, D. L. (1996). Environmental Science and Technology, 30(5), 1419–1428.

    Article  Google Scholar 

  54. Max, M. H., Rivera, M. D., Bossert, I. D., Rogers, J. E., & Young, L. Y. (1990). Microbial Ecology, 20, 141–150.

    Article  Google Scholar 

  55. Thomas, S., Sarfaraz, S., Mishra, L. C., & Iyengar, L. (2002). World Journal of Microbiology and Biotechnology, 18, 57–63.

    Article  CAS  Google Scholar 

  56. Deka, B. J., Sahariah, B. P., & Chakraborty, S. (2008). Journal of Environmental Research and Development, 3(2), 442–448.

    CAS  Google Scholar 

  57. Zhang, M., Tay, J. H., Qian, Y., & Gu, X. S. (1997). Journal of Environmental Engineering, 123(9), 876–883.

    Article  CAS  Google Scholar 

  58. Ouattara, A. S., Assih, E. A., Thierry, S., Cayol, J. L., Labat, M., Monroy, O., & Macarie, H. (2003). International Journal of Systematic and Evolutionary Microbiology, 53, 1247–1251.

    Article  CAS  Google Scholar 

  59. Acosta-González, A., Rosselló-Móra, R., & Marqués, S. (2013). Environmental Microbiology, 15(1), 77–92.

    Article  Google Scholar 

  60. Kundu, D., Hazra, C., Dandi, N., & Chaudhari, A. (2013). Biodegradation, 24(6), 775–793.

    Article  CAS  Google Scholar 

  61. Yoon, J. H., Kang, S. S., Cho, Y. G., Lee, S. T., Kho, Y. H., Kim, C. J., & Park, Y. H. (2000). International Journal of Systematic and Evolutionary Microbiology, 50, 2173–2180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligy Philip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K., Philip, L. Treatment of Phenolics, Aromatic Hydrocarbons, and Cyanide-Bearing Wastewater in Individual and Combined Anaerobic, Aerobic, and Anoxic Bioreactors. Appl Biochem Biotechnol 175, 300–322 (2015). https://doi.org/10.1007/s12010-014-1262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1262-y

Keywords

Navigation