Skip to main content
Log in

Anaerobic biodegradation ofPara-cresol under three reducing conditions

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The anaerobic degradation ofp-cresol was studied with one sediment source under three reducing conditions—denitrifying, sulfidogenic, and methanogenic. Loss ofp-cresol (1 mM) in all the anaerobic systems took initially 3 to 4 weeks. In acclimated culturesp-cresol was degraded in less than a week.p-Cresol was completely metabolized under denitrifying, sulfidogenic, and methanogenic conditions, with formation of nitrogen gas, loss of sulfate, and formation of methane and carbon dioxide, respectively.p-Cresol metabolism proceeded throughp-hydroxybenzal-dehyde andp-hydroxybenzoate under denitrifying and methanogenic conditions. These compounds were rapidly degraded in cultures acclimated top-cresol under all three reducing conditions. These results suggest that the initial pathway ofp-cresol degradation is the same under denitryfying, sulfidogenic, and methanogenic conditions and proceeds via oxidation of the methyl substituent top-hydroxybenzaldehyde andp-hydroxybenzoate. The initial rate ofp-hydroxybenzaldehyde degradation was high in both the unacclimated cultures and in the cultures acclimated top-cresol, suggesting that this step is nonspecific. Benzoate was additionally detected as a metabolite followingp-hydroxybenzoate in the methanogenic cultures, but not in the denitrifying or sulfidogenic cultures. The degradation pathway therefore may diverge afterp-hydroxybenzoate formation depending on which electron acceptor is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives byDesulfobacterium phenolium sp. nov, Arch Microbiol 146:177–180

    Article  CAS  Google Scholar 

  2. Bakker G (1977) Anaerobic degradation of aromatic compounds in the presence of nitrate. FEMS Letters 1:103–108

    Article  CAS  Google Scholar 

  3. Bossert ID, Young LY (1986) Anaerobic oxidation ofp-cresol by a denitrifying bacterium. Appl Environ Microbiol 52:1117–1122

    PubMed  CAS  Google Scholar 

  4. Bossert ID, Rivera MD, Young LY (1986)p-Cresol biodegradation under denitrifying conditions: isolation of a bacterial coculture, FEMS Microbiol Ecol 38:313–319

    Article  CAS  Google Scholar 

  5. Bossert ID, Whited G, Gibson DT, Young LY (1989) Anaerobic oxidation ofp-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium J Bacteriol 171:2956–2962

    PubMed  CAS  Google Scholar 

  6. Dagley S, Patel MD (1957) Oxidation ofp-cresol and related compounds by aPseudomonas. Biochem J 66:227–233

    PubMed  CAS  Google Scholar 

  7. Ehrlich GG, Godsy EM, Goerlitz DF, Hult MF (1983) Microbial, ecology of a creosote-contaminated aquifer at St. Louis Park, Minnesota. Dev Ind Microbiol 24:235–245

    CAS  Google Scholar 

  8. Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (Lond) 270:17–22

    Article  CAS  Google Scholar 

  9. Fedorak PM, Hrudey SE (1984) The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis. Water Res 18:361–367

    Article  CAS  Google Scholar 

  10. Genthner BR Sharak, Price WA II, Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55:1472–1476

    PubMed  CAS  Google Scholar 

  11. Genthner BR Sharak, Townsend GT, Chapman PJ (1989) Anaerobic transformation of phenol to benzoate viapara-carboxylation: use of fluorinated analogues to elucidate the mechanism of transformation. Biochem Biophys Res Comm 162:945–951

    Article  PubMed  CAS  Google Scholar 

  12. Glöckler R, Tschech A, Fuchs G (1989) Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA in a denitrifying, phenol-degradingPseudomonas species. FEBS Letters 251:237–240

    Article  PubMed  Google Scholar 

  13. Godsy EM, Goerlitz DF, Ehrlich GG (1983) Methanogenesis of phenolic compounds by a bacterial consortium from a contaminated aquifer in St. Louis Park, Minnesota. Bull Environ Contam Toxicol 30:261–268

    Article  PubMed  CAS  Google Scholar 

  14. Goerlitz DF, Troutman DE, Godsy EM, Franks BJ (1985) Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida. Environ Sci Technol 19:955–961

    Article  CAS  Google Scholar 

  15. Harwood CS, Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacteriumRhodopseudomonas palustris. Appl Environ Microbiol 54:712–717

    PubMed  CAS  Google Scholar 

  16. Healy JB Jr, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38:84–89

    PubMed  CAS  Google Scholar 

  17. Hopper DJ (1978) Incorporation of [18O] water in the formation ofp-hydroxybenzyl alcohol by thep-cresol methylhydroxylase fromPseudomonas putida. Biochem J 175:345–347

    PubMed  CAS  Google Scholar 

  18. Hopper DJ, Taylor DG (1975) Pathways for degradation ofm-cresol andp-cresol byPseudomonas putida. J Bacteriol 122:1–6

    PubMed  CAS  Google Scholar 

  19. Howarth RW (1978) A rapid and precise method for determining sulfate in seawater, estuarine waters, and sediment pore waters. Limnol Oceanogr 23:1069–1072

    Article  Google Scholar 

  20. Humenick MJ, Britton LN, Mattox CF (1982) Natural restoration of ground water in UCG. In Situ 6:107–125

    CAS  Google Scholar 

  21. Knoll G, Winter J (1987) Anaerobic degradation of phenol in sewage sludge. Benzoate formation from phenol and CO2 in the presence of hydrogen. Appl Microbiol Biotechnol 25:384–391

    Article  CAS  Google Scholar 

  22. Knoll G, Winter J (1989) Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl Microbiol Biotechnol 30:318–324

    Article  CAS  Google Scholar 

  23. Kobayashi T, Hashinaga T, Mikami E, Suzuki T (1989) Methanogenic degradation of phenol and benzoate in acclimated sludges. Wat Sci Tech 21:55–65

    CAS  Google Scholar 

  24. Kuhn EP, Suflita JM, Rivera MD, Young LY (1989) Influence of alternate electron acceptors on the metabolic fate of hydroxybenzoate isomers in anoxic aquifer slurries. Appl Environ Microbiol 55:590–598

    PubMed  CAS  Google Scholar 

  25. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300

    Article  CAS  Google Scholar 

  26. Roberts DS, Fedorak PM, Hrudey SE (1990) CO2 incorporation and 4-hydroxy-2-methylbenzoic acid formation during anaerobic metabolism ofm-cresol by a methanogenic consortion. Appl Environ Microbiol 56:472–478

    PubMed  CAS  Google Scholar 

  27. Sawhney BL, Kozloski RP (1984) Organic pollutants in leachates from landfill sites. J Environ Qual 13:349–352

    Article  CAS  Google Scholar 

  28. Smolenski WJ, Suflita JM (1987) Biodegradation of cresol isomers in anoxic aquifers. Appl Environ Microbiol 53:710–716

    PubMed  CAS  Google Scholar 

  29. Suflita JM, Liang L, Saxena A (1989) The anaerobic biodegradation ofo-, m-andp-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer. J Ind Microbiol 4:255–266

    Article  CAS  Google Scholar 

  30. Stuermer DH, Ng DJ, Morris CJ (1982) Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environ Sci Technol 16:582–587

    Article  CAS  Google Scholar 

  31. Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217

    Article  PubMed  CAS  Google Scholar 

  32. Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-hydroxy-benzoate:in vitro study of isotope exchange between14CO2 and 4-hydroxybenzoate. Arch Microbiol 152:594–599

    Article  CAS  Google Scholar 

  33. Tschech A, Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145:396–402

    Article  CAS  Google Scholar 

  34. Young LY, Rivera MD (1985) Methanogenic degradation of four phenolic compounds. Water Res 19:1325–1332

    Article  CAS  Google Scholar 

  35. Zhang X, Morgan TV, Wiegel J (1990) Conversion of13C-1 phenol to13C-4 benzoate, an intermediate step in the anaerobic degradation of chlorophenols. FEMS Microbiol Lett 67:63–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häggblom, M.M., Rivera, M.D., Bossert, I.D. et al. Anaerobic biodegradation ofPara-cresol under three reducing conditions. Microb Ecol 20, 141–150 (1990). https://doi.org/10.1007/BF02543873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02543873

Keywords

Navigation