Skip to main content

Advertisement

Log in

Bioelectricity Production from Soil Using Microbial Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) are a device using microorganisms as biocatalysts for transforming chemical energy into bioelectricity. As soil is an environment with the highest number of microorganisms and diversity, we hypothesized that it should have the potential for energy generation. The soil used for the study was Mollic Gleysol collected from the surface layer (0–20 cm). Four combinations of soil MFC differing from each other in humidity (full water holding capacity [WHC] and flooding) and the carbon source (glucose and straw) were constructed. Voltage (mV) and current intensity (μA) produced by the MFCs were recorded every day or at 2-day intervals. The fastest and the most effective MFCs in voltage generation (372.2 ± 5 mV) were those constructed on the basis of glucose (MFC-G). The efficiency of straw MFCs (MFC-S) was noticeable after 2 weeks (319.3 ± 4 mV). Maximal power density (P max = 32 mW m−2) was achieved by the MFC-G at current density (CD) of 100 mA m−2. Much lower values of P max (10.6–10.8 mW m−2) were noted in the MFC-S at CD of ca. 60–80 mA m−2. Consequently, soil has potential for production of renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vologni, V., Kakarla, R., Angelidaki, I., & Min, B. (2013). Bioprocess and Biosystems Engineering, 36, 635–642.

    Article  CAS  Google Scholar 

  2. Mao, L., & Verwoerd, W. S. (2013). International Journal of Energy and Environmental Engineering, 4, 1–18.

    Article  Google Scholar 

  3. Quan, X., Quan, Y., Tao, K., & Jiang, X. (2013). Bioresource Technology, 128, 259–265.

    Article  CAS  Google Scholar 

  4. Won, K., Kim, Y. H., An, S., Lee, H. J., Park, S., Choi, Y. K., et al. (2013). Applied Biochemistry and Biotechnology, 171, 1194–1202.

    Article  CAS  Google Scholar 

  5. Wolińska, A., Stępniewska, Z., Wołoszyn, A., Pytlak, A., & Dziuba, A. (2011). Acta Agrophysica, 194, 7–11.

    Google Scholar 

  6. Roesch , L. F. W., Fulthorpe, R R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., et al. (2007). The ISME Journal, 1-8.

  7. Torsvik, V., Goksoyr, J., & Daae, F. (1990). Current Opinion in Microbiology, 5, 240–245.

    Article  Google Scholar 

  8. Black, H. I. J., Perekh, N. R., Chaplow, J. S., Monson, F., Watkins, J., Creamer, R., et al. (2003). Journal of Environmental Management, 67, 255–266.

    Article  CAS  Google Scholar 

  9. An, J., Kim, B., Nam, J., Ng, H. Y., & Chang, I. S. (2013). Bioresource Technology, 127, 138–142.

    Article  CAS  Google Scholar 

  10. Ball, P. (2007). Nature, 449, 388.

    Article  CAS  Google Scholar 

  11. Özkaya, B., Cetnikaya, A. Y., Cakmakci, M., Kardağ, D., & Sahinkaya, E. (2013). Bioprocess and Biosystems Engineering, 36, 399–405.

    Article  Google Scholar 

  12. Rabaey, K., & Verstraete, W. (2005). Trends in Biotechnology, 23, 291–298.

    Article  CAS  Google Scholar 

  13. Davis, F., & Higson, S. P. J. (2007). Biosensors and Bioelectronics, 22, 1224–1235.

    Article  CAS  Google Scholar 

  14. Wang, H., Jiang, S. C., Wang, Y., & Xiao, B. (2013). Bioresource Technology, 138, 109–116.

    Article  CAS  Google Scholar 

  15. Cai, J., Zheng, P., Zhang, J., Xie, Z., Li, W., & Sun, P. (2013). Bioresource Technology, 129, 224–228.

    Article  CAS  Google Scholar 

  16. Liu, J. L., Lowy, D. A., Baumann, R. G., & Tender, L. M. (2007). Journal of Applied Microbiology, 102, 177–183.

    Article  CAS  Google Scholar 

  17. Oh, S. T., Kim, J. R., Premier, G. C., Lee, T. H., Kim, C., & Sloan, W. T. (2010). Biotechnology Advances, 28, 871–881.

    Article  CAS  Google Scholar 

  18. Yang, Y., Sun, G., & Xu, M. (2011). Journal of Chemical Technology and Biotechnology, 86, 625–632.

    Article  CAS  Google Scholar 

  19. Banach, A. M., Banach, K., Visser, E. J. W., Stępniewska, Z., Smits, A. J. M., et al. (2009). Biogeochemistry, 92, 247–262.

    Article  Google Scholar 

  20. Reimers, C. E., Tender, L. M., & Lovley, D. R. (2001). Environmental Science and Technology, 35, 192–195.

    Article  CAS  Google Scholar 

  21. Song, T., Xiao, P., Wu, X., & Zhou, C. C. (2013). Applied Biochemistry and Biotechnology, 170, 1241–1250.

    Article  CAS  Google Scholar 

  22. Piechocki, J., Neugebauerr, M., & Sołowiej, P. (2010). Inżynieria Rolnicza, 3, 165–170.

    Google Scholar 

  23. Niessen, J., Harnisch, F., Rosenbeum, M., Schröder, U., & Scholz, F. (2006). Electrochemistry Communications, 8, 869–873.

    Article  CAS  Google Scholar 

  24. Liang, P., Wei, J., & Huang, X. (2013). Frontiers of Environmental Science and Engineering, 7, 913–919.

    CAS  Google Scholar 

  25. Pant, D., Bogaert, G. V., Diels, L., & Vanbroekhoven, K. (2010). Bioresource Technology, 101, 1533–1543.

    Article  CAS  Google Scholar 

  26. Yang, F., Ren, L., Pu, Y., & Logan, B. E. (2013). Bioresource Technology, 128, 784–787.

    Article  CAS  Google Scholar 

  27. Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Wlash, F. C. (2006). Biosensors and Bioelectronics, 21, 2015–2045.

    Article  CAS  Google Scholar 

  28. Wolińska, A., & Stępniewska, Z. (2011). Soil Tillage and Microbial Activities, 7, 111–143.

    Google Scholar 

  29. Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenases, 8, 183–210.

    Google Scholar 

  30. Włodarczyk, T. (2000). International Agrophysics, 14, 365–376.

    Google Scholar 

  31. Logan, B. E. (2009). Nature Reviews Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Wolińska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolińska, A., Stępniewska, Z., Bielecka, A. et al. Bioelectricity Production from Soil Using Microbial Fuel Cells. Appl Biochem Biotechnol 173, 2287–2296 (2014). https://doi.org/10.1007/s12010-014-1034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1034-8

Keywords

Navigation