Skip to main content

Advertisement

Log in

Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from primary sludge. In a polarization test, the maximum power density was 0.18 W/m2 at a current density of 0.8 A/m2 with an external resistor of 300 Ω. The anodic solution of the primary sludge needs to be adjusted to a pH 7 for high power generation. The modified primary sludge with an added phosphate buffer prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Environ Sci Technol 40:5172–5180

    Article  CAS  Google Scholar 

  2. Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22:1672–1679

    Article  CAS  Google Scholar 

  3. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  4. Bond DR, Lovley DR (2003) Electricity production by geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  5. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Tech 30:145–152

    Article  CAS  Google Scholar 

  6. Min B, Angelidaki I (2008) Innovative microbial fuel cell for electricity production from anaerobic reactors. J Power Sources 180:641–647

    Article  CAS  Google Scholar 

  7. Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686

    Article  CAS  Google Scholar 

  8. Neyens E, Baeyens J, Heyder BD, Weemaes M (2004) The potential of advanced treatment methods for sewage sludge. Manag Environ Qual Int J 5:8

    Google Scholar 

  9. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  Google Scholar 

  10. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 104:18871–18873

    Article  CAS  Google Scholar 

  11. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  12. Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2012) Improved electricity production from sewage sludge under alkaline conditions in an insert-type air-cathode microbial fuel cell. J Chem Technol Biotechnol 87:80–86

    Article  CAS  Google Scholar 

  13. Liu Z, Li X, Jia B, Zheng Y, Fang L, Yang Q, Wang D, Zeng G (2009) Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell. Water Sci Technol 60:2399–2404

    Article  Google Scholar 

  14. Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195:1130–1135

    Article  CAS  Google Scholar 

  15. Min B, Poulsen FW, Thygesen A, Angelidaki I (2012) Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Bioresour Technol 118:412–417

    Article  CAS  Google Scholar 

  16. Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  17. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  18. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  19. Saravanan R, Arun A, Venkatamohan S, Jegadeesan, Kandavelu T, Veeramanikandan (2010) Membraneless dairy wastewater-sediment interface for bioelectricity generation employing sediment microbial fuel cell (SMFC). Afr J Microbiol Res 4:7

    Google Scholar 

  20. Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30

    Article  CAS  Google Scholar 

  21. Jiang J, Zhao Q, Zhang J, Zhang G, Lee D-J (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100:5808–5812

    Article  CAS  Google Scholar 

  22. Yifeng Zhang LGO, Kongjan Prawit, Angelidaki Irini (2011) Submersible microbial fuel cell for electricity production from sewage sludge. Water Sci Technol 64:50–55

    Article  Google Scholar 

  23. Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75:3389–3395

    Article  CAS  Google Scholar 

  24. Zhang L, Li C, Ding L, Xu K, Ren H (2011) Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. J Chem Technol Biotechnol 86:1226–1232

    Article  CAS  Google Scholar 

  25. Yinfang Z, Hong L, Lu Y (2008) The effect of suspended sludge on electricity generation in microbial fuel cells. In: The 2nd international conference on bioinformatics and biomedical engineering, p 5

  26. Liu B-F, Ren N-Q, Tang J, Ding J, Liu W-Z, Xu J-F, Cao G-L, Guo W-Q, Xie G-J (2010) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrogen Energy 35:2858–2862

    Article  CAS  Google Scholar 

  27. Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  Google Scholar 

  28. Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on ph and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  CAS  Google Scholar 

  29. Zhuang L, Zhou S, Li Y, Yuan Y (2010) Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour Technol 101:3514–3519

    Article  CAS  Google Scholar 

  30. Oh S-E, Logan B (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169

    Article  CAS  Google Scholar 

  31. Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot P, Angelidaki I, Nogueira R (2011) In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 81:99–103

    Article  CAS  Google Scholar 

  32. Wang X, Feng YJ, Lee AH (2008) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57:5

    Google Scholar 

  33. Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  Google Scholar 

  34. Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK (2003) Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res 37:4561–4572

    Article  CAS  Google Scholar 

  35. Yang F, Ren L, Pu Y, Logan BE (2013) Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresour Technol 128:784–787

    Google Scholar 

  36. Mohan SV, Chandrasekhar K (2011) Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresour Technol 102:7077–7085

    Article  CAS  Google Scholar 

  37. Jung S, Regan J (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Danish Agency for Science Technology and Innovation: 2104-05-0003. The study was supported by the National Research Foundation of Korea Grant (No: 2010-0003940, 2012R1A1A2042031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Booki Min.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure. S1 SEM images of the biofilm on the anode electrode. (DOCX 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vologni, V., Kakarla, R., Angelidaki, I. et al. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess Biosyst Eng 36, 635–642 (2013). https://doi.org/10.1007/s00449-013-0918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0918-2

Keywords

Navigation