Skip to main content
Log in

Development of a Biosensor for Copper Detection in Aqueous Solutions Using an Anemonia sulcata Recombinant GFP

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fluorescent proteins from marine organisms represent potential candidates for biosensor development. In this paper, we described the isolation of a native green fluorescent protein from Anemonia sulcata and the cloning and purification of its equivalent as a recombinant protein in Escherichia coli. Furthermore, the spectroscopic behaviours of the native and recombinant GFPs were investigated as a function of Cu2+, Cd2+, Pb2+ and Ni2+ concentration. Our results suggest the high selectivity of both proteins at copper than the other metals and, for the recombinant protein, a great sensitivity at a very low concentration (0.1–1 μM). Moreover, starting from these data, using the combination of molecular biology techniques and optical setup, we developed a device for the detection of Cu2+ in water solutions. The quenching effect detected with the device showed that the relative attenuation of the signal (0.46 ± 0.02 AU) was slightly larger than the data measured by fluorescence spectra (0.65 ± 0.03 AU). The good sensitivity in the span of two orders of the magnitude of Cu2+ concentration, the fact that the instrument is made up of low-cost and sturdy parts and the selective quenching of rAsGFP to copper ions make this setup suited as a low cost, on-the-field, copper ion-specific biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trautwein, A. X. (1997). Bioinorganic chemistry: transition metals in biology and their coordination chemistry. Wiley-VCH, Weinheim.

  2. Becker, J. S., Zoriy, M. V., Pickhardt, C., Palomero-Gallagher, N., & Zilles, K. (2005). Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Analytical chemistry, 77, 3208–3216.

    Article  CAS  Google Scholar 

  3. Rao, G. P., Seshaiah, K., Rao, Y. K., & Wang, M. C. (2006). Solid phase extraction of Cd, Cu, and Ni from leafy vegetables and plant leaves using amberlite XAD-2 functionalized with 2-hydroxy-acetophenone-thiosemicarbazone (HAPTSC) and determination by inductively coupled plasma atomic emission spectroscopy. Journal of agricultural and food chemistry, 54, 2868–2872.

    Article  CAS  Google Scholar 

  4. Xiang, Y., Li, Z., Chen, X., & Tong, A. (2008). Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta, 74, 1148–1153.

    Article  CAS  Google Scholar 

  5. Bozkurt, S. S., & Cavas, L. (2009). Can Hg(II) be determined via quenching of the emission of green fluorescent protein from Anemonia sulcata var. smaragdina? Applied biochemistry and biotechnology, 158, 51–58.

    Article  CAS  Google Scholar 

  6. Chapleau, R. R., Blomberg, R., Ford, P. C., & Sagermann, M. (2008). Design of a highly specific and noninvasive biosensor suitable for real-time in vivo imaging of mercury(II) uptake. Protein science: a publication of the Protein Society, 17, 614–622.

    Article  CAS  Google Scholar 

  7. Eli, P., & Chakrabartty, A. (2006). Variants of DsRed fluorescent protein: development of a copper sensor. Protein science: a publication of the Protein Society, 15, 2442–2447.

    Article  CAS  Google Scholar 

  8. Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Galla, H. J., & Prachayasittikul, V. (2010). Fluorescent protein-based optical biosensor for copper ion quantitation. Biological trace element research, 134, 352–363.

    Article  CAS  Google Scholar 

  9. Rahimi, Y., Goulding, A., Shrestha, S., Mirpuri, S., & Deo, S. K. (2008). Mechanism of copper induced fluorescence quenching of red fluorescent protein, DsRed. Biochemical and biophysical research communications, 370, 57–61.

    Article  CAS  Google Scholar 

  10. Richmond, T. A., Takahashi, T. T., Shimkhada, R., & Bernsdorf, J. (2000). Engineered metal binding sites on green fluorescence protein. Biochemical and biophysical research communications, 268, 462–465.

    Article  CAS  Google Scholar 

  11. Sumner, J. P., Westerberg, N. M., Stoddard, A. K., Hurst, T. K., Cramer, M., Thompson, R. B., et al. (2006). DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu(+) and Cu(2+) ions. Biosensors & bioelectronics, 21, 1302–1308.

    Article  CAS  Google Scholar 

  12. Tansila, N., Becker, K., Isarankura Na-Ayudhya, C., Prachayasittikul, V., & Bulow, L. (2008). Metal ion accessibility of histidine-modified superfolder green fluorescent protein expressed in Escherichia coli. Biotechnology letters, 30, 1391–1396.

    Article  CAS  Google Scholar 

  13. Balint, E. E., Petres, J., Szabo, M., Orban, C. K., Szilagyi, L., & Abraham, B. (2013). Fluorescence of a histidine-modified enhanced green fluorescent protein (EGFP) effectively quenched by copper(II) ions. Journal of fluorescence, 23, 273–281.

    Article  CAS  Google Scholar 

  14. Fradkov, A. F., Verkhusha, V. V., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Martynov, V. I., et al. (2002). Far-red fluorescent tag for protein labelling. The Biochemical journal, 368, 17–21.

    Article  CAS  Google Scholar 

  15. Peternel, S., Gaberc-Porekar, V., & Komel, R. (2009). Bacterial growth conditions affect quality of GFP expressed inside inclusion bodies. Acta Chimica Slovenica, 56, 860–867.

    CAS  Google Scholar 

  16. Fersht, A. (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: Freeman.

    Google Scholar 

  17. Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 97, 11984–11989.

    Article  CAS  Google Scholar 

  18. Mizuno, H., Sawano, A., Eli, P., Hama, H., & Miyawaki, A. (2001). Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry, 40, 2502–2510.

    Article  CAS  Google Scholar 

  19. Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., et al. (2004). GFP-like proteins as ubiquitous Metazoan superfamily: evolution of functional features and structural complexity. Molecular and Biological Evolution, 21, 841–850.

    Article  CAS  Google Scholar 

  20. Ward, W. W. (1998) Green fluorescent protein: properties, applications, and protocols. In: Chalfie M & Kain S (Eds). Wiley, New York, pp 45–75.

  21. Wiedenmann, J., Elke, C., Spindler, K. D., & Funke, W. (2000). Cracks in the beta-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 97, 14091–14096.

    Article  CAS  Google Scholar 

  22. Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K. D., & Nienhaus, G. U. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 99, 11646–11651.

    Article  CAS  Google Scholar 

  23. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273, 1392–1395.

    Article  CAS  Google Scholar 

  24. Sniegowski, J. A., Lappe, J. W., Patel, H. N., Huffman, H. A., & Wachter, R. M. (2005). Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. The Journal of biological chemistry, 280, 26248–26255.

    Article  CAS  Google Scholar 

  25. Wood, T. I., Barondeau, D. P., Hitomi, C., Kassmann, C. J., Tainer, J. A., & Getzoff, E. D. (2005). Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Biochemistry, 44, 16211–16220.

    Article  CAS  Google Scholar 

  26. Zagranichny, V. E., Rudenko, N. V., Gorokhovatsky, A. Y., Zakharov, M. V., Balashova, T. A., & Arseniev, A. S. (2004). Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata, asFP595. Biochemistry, 43, 13598–13603.

    Article  CAS  Google Scholar 

  27. Regan, L. (1993). The design of metal-binding sites in proteins. Annual review of biophysics and biomolecular structure, 22, 257–287.

    Article  CAS  Google Scholar 

  28. Walter, E. D., Chattopadhyay, M., & Millhauser, G. L. (2006). The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity. Biochemistry, 45, 13083–13092.

    Article  CAS  Google Scholar 

  29. Navarra, G., Leone, M., & Militello, V. (2007). Thermal aggregation of beta-lactoglobulin in presence of metal ions. Biophysical chemistry, 131, 52–61.

    Article  CAS  Google Scholar 

  30. Navarra, G., Giacomazza, D., Leone, M., Librizzi, F., Militello, V., & San Biagio, P. L. (2009). Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. European biophysics journal : EBJ, 38, 437–446.

    Article  CAS  Google Scholar 

  31. Vogt, A., D’angelo, C., Oswald, F., Denzel, A., Mazel, C. H., Matz, M. V., et al. (2008). A green fluorescent protein with photoswitchable emission from the deep sea. PloS one, 3, e3766.

    Article  Google Scholar 

  32. Sigel, H. (1982) Metal ions in biological systems, properties of copper, vol. 12. Marcel Dekker, New York.

  33. Silvia, J., & Williams, R. (1991). The biological chemistry of the elements: the inorganic chemistry of life. Oxford: Claredon.

    Google Scholar 

  34. Fitzgerald, D. J. (1998). Safety guidelines for copper in water. The American journal of clinical nutrition, 67, 1098S–1102S.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Salvatore Mazzola for critical reading of the manuscript and Dr. Aldo Nicosia and Dr. Monica Salamone for helpful discussion. This work was supported by PO FERS 2007/2013 Linea di intervento 4.1.1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masullo, T., Puccio, R., Di Pierro, M. et al. Development of a Biosensor for Copper Detection in Aqueous Solutions Using an Anemonia sulcata Recombinant GFP. Appl Biochem Biotechnol 172, 2175–2187 (2014). https://doi.org/10.1007/s12010-013-0669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0669-1

Keywords

Navigation