Skip to main content
Log in

Fluorescent Protein-Based Optical Biosensor for Copper Ion Quantitation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present study, spectroscopic determinations of copper ions using chimeric metal-binding green fluorescent protein (His6GFP) as an active indicator have been explored. Supplementation of copper ions to the GFP solution led to a remarkable decrease of fluorescent intensity corresponding to metal concentrations. For circumstances, rapid declining of fluorescence up to 60% was detected in the presence of 500 μM copper. This is in contrast to those observed in the case of zinc and calcium ions, in which approximately 10–20% of fluorescence was affected. Recovery of its original fluorescence up to 80% was mediated by the addition of ethylenediamine tetraacetic acid. More importantly, in the presence of metal ions, the emission wavelength maximum remains unchanged while reduction of the optical density of the absorption spectrum has been observed. This indicates that the chromophore’s ground state was possibly affected by the static quenching process. Results from circular dichroism measurements revealed that the overall patterns of circular dichroism spectra after exposure to copper ions were not significantly different from that of the control, where the majority of sharp positive band around 195–196 nm in combination with a broad negative deflection around 215–216 nm was obtained. Taken together, it can be presumed that copper ions exerted their static quenching on the fluorescence rather than structural or conformational alteration. However, notification has to be made that some peptide rearrangements may also occur in the presence of metal ions. Further studies were conducted to investigate the feasibility of using the His6GFP as a sensing unit for copper ions. The His6GFP was encapsulated in Sol-gel and immobilized onto the optical fiber connected with a fluorescence detecting device. The Sol-gel was doped into the metal solution where the quenching of fluorescence could be monitored in real time. The sensing unit provided a high sensitivity of detection in the range of 0.5 μM to 50 mM with high selectivity for copper ions. All these findings open up a high potential to apply the fluorescent protein-based bioanalytical tool for copper determination in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  CAS  PubMed  Google Scholar 

  2. Fitzgerald DJ (1998) Safety guidelines for copper in water. Am J Clin Nutr 67:1098S–1102S

    CAS  PubMed  Google Scholar 

  3. Krupanidhi S, Sreekumar A, Sanjeevi CB (2008) Copper & biological health. Indian J Med Res 128:448–461

    CAS  PubMed  Google Scholar 

  4. Abu-Shawish HM, Saadeh SM, Hussien AR (2008) Enhanced sensitivity for Cu(II) by a salicylidine-functionalized polysiloxane carbon paste electrode. Talanta 76:941–948

    Article  CAS  PubMed  Google Scholar 

  5. Singh LP, Bhatnagar JM (2004) Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 64:313–319

    Article  CAS  PubMed  Google Scholar 

  6. Khatua S, Choi SH, Lee J et al (2009) Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg Chem 48:1799–1801

    Article  CAS  PubMed  Google Scholar 

  7. Prachayasittikul V, Isarankura-Na-Ayudhya C, Mejare M et al (2000) Construction of chimeric histidine-6-green fluorescent protein: role of metal on fluorescent characteristic. Thammasat Int J Sci Tech 5:61–68

    Google Scholar 

  8. Richmond TA, Takahashi TT, Shimkhada R et al (2000) Engineered metal binding sites on green fluorescence protein. Biochem Biophys Res Commun 268:462–465

    Article  CAS  PubMed  Google Scholar 

  9. Prachayasittikul V, Isarankura-Na-Ayudhya C, Bulow L (2001) Lighting E. coli cells as biological sensors for Cd2+. Biotechnol Lett 23:1285–1291

    Article  CAS  Google Scholar 

  10. Barondeau DP, Kassmann CJ, Tainer JA et al (2002) Structural chemistry of a green fluorescent protein Zn biosensor. J Am Chem Soc 124:3522–3524

    Article  CAS  PubMed  Google Scholar 

  11. Tansila N, Tantimongcolwat T, Isarankura-Na-Ayudhya C et al (2007) Rational design of analyte channels of the green fluorescent protein for biosensor applications. Int J Biol Sci 3:463–470

    CAS  PubMed  Google Scholar 

  12. Eli P, Chakrabartty A (2006) Variants of DsRed fluorescent protein: development of a copper sensor. Protein Sci 15:2442–2447

    Article  CAS  PubMed  Google Scholar 

  13. Sumner JP, Westerberg NM, Stoddard AK et al (2006) DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosens Bioelectron 21:1302–1308

    Article  CAS  PubMed  Google Scholar 

  14. Sumner JP, Westerberg NM, Stoddard AK et al (2006) Cu+- and Cu2+-sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element. Sens Actuators B Chem 113:760–767

    Article  CAS  Google Scholar 

  15. Rahimi Y, Shrestha S, Banerjee T et al (2007) Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal Biochem 370:60–67

    Article  CAS  PubMed  Google Scholar 

  16. Rahimi Y, Goulding A, Shrestha S et al (2008) Mechanism of copper induced fluorescence quenching of red fluorescent protein, DsRed. Biochem Biophys Res Comm 370:57–61

    Article  CAS  PubMed  Google Scholar 

  17. Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15:755–764

    Article  CAS  PubMed  Google Scholar 

  18. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  19. Stepanenko OV, Verkhusha VV, Kuznetsova IM et al (2008) Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Curr Protein Pept Sci 9:338–369

    Article  CAS  PubMed  Google Scholar 

  20. Bizzarri R, Serresi M, Luin S et al (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122

    Article  CAS  PubMed  Google Scholar 

  21. Suwanwong Y, Isarankura-Na-Ayudhya C, Bulow L et al (2006) Insights into the genetic re-engineering of chimeric antibody-binding green fluorescent proteins for immunological taggers. EXCLI J 5:164–178

    Google Scholar 

  22. VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60–65

    Article  CAS  PubMed  Google Scholar 

  23. Prachayasittikul V, Isarankura-Na-Ayudhya C, Boonpangrak S et al (2004) Lipid-membrane affinity of chimeric metal-binding green fluorescent protein. J Membr Biol 200:47–56

    Article  CAS  PubMed  Google Scholar 

  24. Isarankura-Na-Ayudhya C, Prachayasittikul V, Galla HJ (2004) Binding of chimeric metal-binding green fluorescent protein to lipid monolayer. Eur Biophys J 33:522–534

    Article  CAS  PubMed  Google Scholar 

  25. Prachayasittikul V, Isarankura-Na-Ayudhya C, Tantimongcolwat T et al (2005) Nanoscale orientation and lateral organization of chimeric metal-binding green fluorescent protein on lipid membrane determined by epifluorescence and atomic force microscopy. Biochem Biophys Res Comm 326:298–306

    Article  CAS  PubMed  Google Scholar 

  26. Prachayasittikul V, Isarankura-Na-Ayudhya C, Hilterhaus L et al (2005) Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy. Biochem Biophys Res Comm 327:174–182

    Article  CAS  PubMed  Google Scholar 

  27. Isarankura-Na-Ayudhya C, Suwanwong Y, Boonpangrak S et al (2005) Co-expression of zinc binding motif and GFP as a cellular indicator of metal ions mobility. Int J Biol Sci 1:146–151

    PubMed  Google Scholar 

  28. Tansila N, Becker K, Isarankura-Na-Ayudhya C et al (2008) Metal ion accessibility of histidine-modified superfolder green fluorescent protein expressed in Escherichia coli. Biotechnol Lett 30:1391–1396

    Article  CAS  PubMed  Google Scholar 

  29. Jung K, Park J, Maeng P-J et al (2005) Fluorescence quenching of green fluorescent protein during denaturation by guanidine. Bull Korean Chem Soc 26:413–417

    Article  CAS  Google Scholar 

  30. Visser NV, Hink MA, Borst JW et al (2002) Circular dichroism spectroscopy of fluorescent proteins. FEBS Lett 521:31–35

    Article  CAS  PubMed  Google Scholar 

  31. Kneen M, Farinas J, Li Y et al (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  PubMed  Google Scholar 

  32. Mayr T, Werner T (2002) Highly selective optical sensing of copper(II) ions based on fluorescence quenching of immobilised Lucifer Yellow. Analyst 127:248–252

    Article  CAS  Google Scholar 

  33. Chavez-Crooker P, Garrido N, Ahearn GA (2001) Copper transport by lobster hepatopancreatic epithelial cells separated by centrifugal elutriation: measurements with the fluorescent dye Phen Green. J Exp Biol 204:1433–1444

    CAS  PubMed  Google Scholar 

  34. Breuer W, Epsztejn S, Millgram P et al (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol 268:C1354–C1361

    CAS  PubMed  Google Scholar 

  35. McCall KA, Fierke CA, Mulnard RA et al (2000) Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals. Anal Biochem 284:307–315

    Article  CAS  PubMed  Google Scholar 

  36. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11984–11989

    Article  CAS  PubMed  Google Scholar 

  37. Lauf U, Lopez P, Falk MM (2001) Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett 498:11–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Young Scholars Research Fellowship from The Thailand Research Fund to T.T. (grant no. MRG5080158), the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium fur wirtschaftliche Zusammenarbeit und Entwicklung (Federal Ministry for Economic Cooperation and Development; BMZ; grant no.GA233/19–1,2) and the annual budget grant of Mahidol University (B.E. 2551-2555). The authors would like to thank Prof. Dr. Hans-Ulrich Humpf (Institut für Lebensmittelchemie, Westfälische Wilhelms Universität) for his assistance on the operation of CD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virapong Prachayasittikul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Galla, HJ. et al. Fluorescent Protein-Based Optical Biosensor for Copper Ion Quantitation. Biol Trace Elem Res 134, 352–363 (2010). https://doi.org/10.1007/s12011-009-8476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8476-9

Keywords

Navigation