Skip to main content
Log in

Roasting and Colouring Curves for Coffee Beans with Broad Time-Temperature Variations

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effects of time and temperature on change in bean colour and kinetics of coffee roasting covering pre-roasting and over-roasting condition were investigated. Arabica coffee beans (Colombia Excelso) were dried or roasted in an oven at constant temperatures (140, 180, 200, 220, 260, and 300 °C) to obtain the profiles of mass loss and colour change. Changes in roasting rate from the first stage (high rate) to the second (low rate) were found to occur at different levels of roast loss for different roasting temperatures. Roasting curves were obtained by normalising the data of mass reductions, which comprised solid and moisture, to the initial solid mass. Changes in bean colour were found to follow a certain path regardless of the roasting temperature, as shown by the characteristic colouring curve, and were less affected by the temperature compared to the roast loss. A method of predicting the bean colour during roasting was also presented by analysing the relationships among the L*, a* and b* values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A b :

Surface area of coffee bean (m2)

a*:

Red-green colour value

b*:

Yellow-blue colour value

C t :

Content of a material at time t (kg kg−1)

h*:

Hue angle (°)

k :

Lumped reaction rate (kg kg−1 min−1)

L*:

Lightness value (0–100)

m Co :

Initial mass of component (kg)

m Ct :

Mass of component at time t (kg)

m d :

Mass of dry beans (kg)

m gb :

Mass of green beans (kg)

m rb :

Mass of roasted beans (kg)

m So :

Initial mass of solid (kg)

m w :

Mass of wet beans (kg)

p :

A constant

R w :

Drying rate (kg kg−1 min−1)

RL:

Roast loss (kg kg−1)

t :

Time (minute)

T r :

Roasting temperature (°C)

V b :

Volume of coffee bean (m3)

X :

Moisture content (kg kg−1)

X n :

Moisture content at time t n (kg kg−1)

References

  • Basile, M., & Kikic, I. (2009). A lumped specific heat capacity approach for predicting the non-stationary thermal profile of coffee during roasting. Chemical and Biochemical Engineering Quarterly, 23(2), 167–177.

    CAS  Google Scholar 

  • Bekedam, E. K., Loots, M. J., Schols, H. A., van Boekel, M. A. J. S., & Smit, G. (2008). Roasting effects on formation mechanisms of coffee brew melanoidins. Journal of Agricultural and Food Chemistry, 56(16), 7138–7145.

    Article  CAS  Google Scholar 

  • Bhumiratana, N., Adhikari, K., & Chambers IV, E. (2011). Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT - Food Science and Technology, 44, 2185–2192.

    Article  CAS  Google Scholar 

  • Bicho, N. C., Leitão, A. E., Ramalho, J. C., de Alvarenga, N. B., & Lidon, F. C. (2013). Impact of roasting time on the sensory profile of Arabica and Robusta coffee. Ecology of Food and Nutrition, 52(2), 163–177.

    Article  Google Scholar 

  • Bottazzi, D., Farina, S., Milani, M., & Montorsi, L. (2012). A numerical approach for the analysis of the coffee roasting process. Journal of Food Engineering, 112, 243–252.

    Article  CAS  Google Scholar 

  • Coste, R. (1968). Le caféier - Volume 14 de Techniques agricoles et productions tropicales. Paris: G. P. Maisonneuve et Larose (in French).

    Google Scholar 

  • Eggers, R., & Pietsch, A. (2001). Technology I: roasting. In R. J. Clarke & O. G. Vitzthum (Eds.), Coffee recent developments (pp. 90–107). Oxford: Blackwell Science Ltd..

    Google Scholar 

  • Fabbri, A., Cevoli, C., Alessandrini, L., & Romani, S. (2011). Numerical modelling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105, 264–269.

    Article  Google Scholar 

  • Fogliano, V., Monti, S. M., Musella, T., Randazzo, G., & Ritieni, A. (1999). Formation of coloured Maillard reaction products in a gluten–glucose model system. Food Chemistry, 66, 293–299.

    Article  CAS  Google Scholar 

  • Franca, A. S., Mendonça, J. C. F., & Oliveira, S. D. (2005). Composition of green and roasted coffees of different cup qualities. LWT - Food Science and Technology, 38(7), 709–715.

    Article  CAS  Google Scholar 

  • Franca, A. S., Oliveira, L. S., Oliveira, R. C. S., Agresti, P. C. M., & Augusti, R. (2009). A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. Journal of Food Engineering, 92, 345–352.

    Article  CAS  Google Scholar 

  • Gloess, A. N., Vietri, A., Wieland, F., Smrke, S., Schönbächler, B., López, J. A. S., Petrozzi, S., Bongers, S., Koziorowski, T., & Yeretzian, C. (2014). Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 365–366, 324–337.

    Article  Google Scholar 

  • Gökmen, V., & Şenyuva, H. Z. (2006). Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chemistry, 99, 238–243.

    Article  Google Scholar 

  • Hernández, J. A., Heyd, B., Irles, C., Valdovinos, B., & Trystram, G. (2007). Analysis of the heat and mass transfer during coffee batch roasting. Journal of Food Engineering, 78, 1141–1148.

    Article  Google Scholar 

  • Hernández, J. A., Heyd, B., & Trystram, G. (2008a). On-line assessment of brightness and surface kinetics during coffee roasting. Journal of Food Engineering, 87, 314–322.

    Article  Google Scholar 

  • Hernández, J. A., Heyd, B., & Trystram, G. (2008b). Prediction of brightness and surface area kinetics during coffee roasting. Journal of Food Engineering, 89, 156–163.

    Article  Google Scholar 

  • Heyd, B., Broyart, B., Hernandez, J. A., Valvodinos-Tijerino, B., & Trystram, G. (2007). Physical model of heat and mass transfer in a spouted bed coffee roaster. Drying Technology, 25, 1243–1248.

    Article  CAS  Google Scholar 

  • Martins, S. I. F. S., & van Boekel, M. A. J. S. (2003). Melanoidins extinction coefficient in the glucose/glycine Maillard reaction. Food Chemistry, 83, 135–142.

    Article  CAS  Google Scholar 

  • Martins, S. I. F. S., & van Boekel, M. A. J. S. (2005). A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90, 257–269.

    Article  CAS  Google Scholar 

  • Mendonça, J. C. F., Franca, A. S., & Oliveira, L. S. (2009). Physical characterization of non-defective and defective Arabica and Robusta coffees before and after roasting. Journal of Food Engineering, 92, 474–479.

    Article  Google Scholar 

  • Moon, J. K., & Shibamoto, T. (2009). Role of roasting conditions in the profile of volatile flavour chemicals formed from coffee beans. Journal of Agricultural and Food Chemistry, 57, 5823–5831.

    Article  CAS  Google Scholar 

  • Nagaraju, V. D., Murthy, C. T., Ramalakshmi, K., & Srinivasa Rao, P. N. (1997). Studies on roasting of coffee beans in a spouted bed. Journal of Food Engineering, 31, 263–270.

    Article  Google Scholar 

  • Nguyen, T. N. H., & Byun, S. Y. (2013). Combined changes of process conditions improved aromatic properties of Vietnamese Robusta. Biotechnology and Bioprocess Engineering, 18, 248–256.

    Article  CAS  Google Scholar 

  • Nunes, F. M., Cruz, A. C. S., & Coimbra, M. A. (2012). Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. Journal of Agricultural and Food Chemistry, 60, 8710–8719.

    Article  CAS  Google Scholar 

  • Onishi, M., Inoue, M., Araki, T., Iwabuchi, H., & Sagara, Y. (2011). Characteristic colouring curve for white bread during baking. Bioscience, Biotechnology and Biochemistry, 75, 255–260.

    Article  CAS  Google Scholar 

  • Oosterveld, A., Voragen, A. G. J., & Schols, H. A. (2003). Effect of roasting on the carbohydrate composition of Coffea Arabica beans. Carbohydrate Polymers, 54, 193–192.

    Article  Google Scholar 

  • Petisca, C., Pérez-Palacios, T., Farah, A., Pinho, O., & Ferreira, I. M. P. L. V. O. (2013). Furans and other volatile compounds in ground roasted and espresso coffee using headspace solid-phase microextraction: Effect of roasting speed. Food and Bioproducts Processing, 91(3), 233–241.

    Article  CAS  Google Scholar 

  • Pittia, P., Dalla Rosa, M., & Lerici, C. R. (2001). Textural changes of coffee beans as affected by roasting conditions. LWT - Food Science and Technology, 34(3), 168–175.

    Article  CAS  Google Scholar 

  • Santos, J. R., Viegas, O., Páscoa, R. N. M. J., Ferreira, I. M. P. L. V. O., Rangel, A. O. S. S., & Lopes, J. A. (2016). In-line monitoring of the coffee roasting process with near infrared spectroscopy: measurement of sucrose and colour. Food Chemistry, 208, 103–110.

    Article  CAS  Google Scholar 

  • Schenker, S., Handschin, S., Frey, B., Perren, R., & Escher, F. (2000). Pore structure of coffee beans affected by roasting conditions. Journal of Food Science, 65(3), 452–457.

    Article  CAS  Google Scholar 

  • Schwartzberg, H. G. (2002). Modeling bean heating during batch roasting of coffee. In J. Welti-Chanes, G. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21 st century. London, New York, Boca Raton: CRC Press LCC.

    Google Scholar 

  • Strezov, V., & Evans, T. J. (2005). Thermal analysis of the reactions and kinetics of green coffee during roasting. International Journal of Food Properties, 8, 101–111.

    Article  CAS  Google Scholar 

  • Summa, C. A., de la Calle, B., Brohee, M., Stadler, R. H., & Anklam, E. (2007). Impact of the roasting degree of coffee on the in vitro radical scavenging capacity and content of acrylamide. LWT - Food Science and Technology, 40, 1849–1854.

    Article  CAS  Google Scholar 

  • Tressl, R., Nittka, C., & Kersten, E. (1995). Formation of isoleucine-specific Maillard products from [1-13C]-D-glucose and [1-13C]-D-fructose. Journal of Agricultural and Food Chemistry, 43, 1163–1169.

    Article  CAS  Google Scholar 

  • Wang, X., & Lim, L. (2014). A kinetics and modeling study of coffee roasting under isothermal conditions. Food and Bioprocess Technology, 7, 621–632.

    Article  CAS  Google Scholar 

  • Yeretzian, C., Jordan, A., & Badoud, R. (2002). From the green bean to the cup of coffee: investigating coffee roasting by on-line monitoring of volatiles. European Food Resource Technology, 214, 92–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ajinomoto General Foods, Inc. and Food Kansei Communications. Special thanks are also due to Dr. Tomoaki Sōma for providing experimental devices and Mr. Zulhaj Rizki for the discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pramudita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramudita, D., Araki, T., Sagara, Y. et al. Roasting and Colouring Curves for Coffee Beans with Broad Time-Temperature Variations. Food Bioprocess Technol 10, 1509–1520 (2017). https://doi.org/10.1007/s11947-017-1912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1912-5

Keywords

Navigation