Skip to main content
Log in

Relationship between physical changes in the coffee bean due to roasting profiles and the sensory attributes of the coffee beverage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The physical or morphological integrity of the coffee bean during post-harvest processing directly influences the economic value and sensory quality of the coffee beverage. Breakdowns in the outer layers of the beans are characteristics observed for the morphological and economic classification of coffee beans during the commercialization of this product. However, physical changes in the inner layers of the beans that are not seen with the naked eye can also influence the sensory quality of the coffee. Therefore, the objective of this study was to relate changes in the physical structure of coffee beans roasted by four different processes (light, medium, dark, and baked) with the sensory attributes of the beverage. The analyses of the physical characteristics of the coffee beans were carried out by X-ray microtomography and the sensory profile was determined using the Specialty Coffee Association of America protocol. The roasting profile with the highest sensory scores showed higher values for total pore space volume and a negative Euler number. However, the roasting profiles that fluctuated between the highest and lowest of scores of the sensory attributes did not present standardized behavior for the connectivity, Euler number, and total pore space volume. Hence, morphological or physical changes in the coffee beans caused by the different types of roasting correlate with changes in the sensorial profile. Furthermore, the sensory discrimination of these coffee beans among the different roast profiles may be observed by the joint analysis of the flavor and fragrance scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. International Coffee Organization (ICO) (2018) Historical data on the global coffee trade. https://www.ico.org/new_historical.asp

  2. Pereira LL, Guarçoni RC, Pinheiro PF, Osório VM, Pinheiro CA, Moreira TR, ten Caten CS (2020) New propositions about coffee wet processing: chemical and sensory perspectives. Food Chem 310:125943. https://doi.org/10.1016/j.foodchem.2019.125943

    Article  CAS  PubMed  Google Scholar 

  3. Schenker S, Heinemann C, Huber M, Pompizzi R, Perren R, Fischer F (2006) Impact of roasting conditions on the formation of aroma compounds in coffee beans. J Food Sci 67(1):60–66. https://doi.org/10.1111/j.1365-2621.2002.tb11359.x

    Article  Google Scholar 

  4. Nakilcioğlu-Taş E, Ötleş S (2019) Physical characterization of Arabica ground coffee with different roasting degrees. Anais Da Academia Brasileira de Ciencias 91(2):e20180191. https://doi.org/10.1590/0001-3765201920180191

    Article  CAS  PubMed  Google Scholar 

  5. Pérez-Míguez R, Castro-Puyana M, Sánchez-López E, Plaza M, Marina ML (2020) Untargeted HILIC-MS-based metabolomics approach to evaluate coffee roasting process: contributing to an integrated metabolomics multiplatform. Molecules. https://doi.org/10.3390/molecules25040887

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romualdo GR, Rocha AB, Vinken M, Cogliati B, Moreno FS, Chaves MAG, Barbisan LF (2019) Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis. Food Res Int 123:567–589. https://doi.org/10.1016/j.foodres.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  7. Debona DG, Oliveira ECS, Caten CST, Guarconi RC, Rizzo TM, Pereira LL (2021) Sensory analysis and mid-infrared spectroscopy for discriminating roasted specialty coffees. Coffee Sci 16:e161878

    Google Scholar 

  8. Giacalone D, Degn TK, Yang N, Liu C, Fisk I, Münchow M (2019) Common roasting defects in coffee: aroma composition, sensory characterization and consumer perception. Food Qual Prefer 71:463–474. https://doi.org/10.1016/j.foodqual.2018.03.009

    Article  Google Scholar 

  9. Baggenstoss J, Poisson L, Kaegi R, Perren R, Escher F (2008) Coffee roasting and aroma formation: application of different time-temperature conditions. J Agric Food Chem 56(14):5836–5846. https://doi.org/10.1021/jf800327j

    Article  CAS  PubMed  Google Scholar 

  10. Schenker S, Rothgeb T (2017) Chapter 11—the roast—creating the Beans’ Signature. In: B. Folmer (Eds.). The craft and science of coffee, 1st edn. Academic Press, New York, pp 245–271. https://doi.org/10.1016/B978-0-12-803520-7.00011-6

  11. Ferreira TR, Pires LF, Wildenschild D, Heck RJ, Antonino ACD (2018) X-ray microtomography analysis of lime application effects on soil porous system. Geoderma 324:119–130. https://doi.org/10.1016/j.geoderma.2018.03.015

    Article  CAS  Google Scholar 

  12. Pereira LL, Debona DG, Pinheiro PF, de Oliveira GF, ten Caten CS, Moksunova V, Kopanina AV, Vlasova II, Talskikh AI, Yamamoto H (2021) Roasting process. In: quality determinants in coffee production. Springer, New York, pp 303–372. https://doi.org/10.1007/978-3-030-54437-9_7

  13. García M, Candelo-Becerra JE, Hoyos FE (2019) Quality and defect inspection of green coffee beans using a computer vision system. Appl Sci 9(19):4195. https://doi.org/10.3390/app9194195

    Article  Google Scholar 

  14. Khan MIH, Rahman MM, Karim MA (2019) Recent advances in micro-level experimental investigation in food drying technology. Drying Technol 38(5):557–576. https://doi.org/10.1080/07373937.2019.1657145

    Article  Google Scholar 

  15. Léonard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85(1):154–162. https://doi.org/10.1016/j.jfoodeng.2007.07.017

    Article  Google Scholar 

  16. Mizutani R, Suzuki Y (2012) X-ray microtomography in biology. Micron 43(2–3):104–115. https://doi.org/10.1016/j.micron.2011.10.002

    Article  PubMed  Google Scholar 

  17. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29(11):2672–2681. https://doi.org/10.1118/1.1513161

    Article  PubMed  Google Scholar 

  18. Frisullo P, Laverse J, Barnabà M, Navarini L, Del Nobile MA (2012) Coffee beans microstructural changes induced by cultivation processing: an X-ray microtomographic investigation. J Food Eng 109(1):175–181. https://doi.org/10.1016/j.jfoodeng.2011.09.015

    Article  Google Scholar 

  19. Pittia P, Sacchetti G, Mancini L, Voltolini M, Sodini N, Tromba G, Zanini F (2011) Evaluation of microstructural properties of coffee beans by synchrotron x-ray microtomography: a methodological approach. J Food Sci. https://doi.org/10.1111/j.1750-3841.2010.02009.x

    Article  PubMed  Google Scholar 

  20. Bustos-Vanegas JD, Corrêa PC, Martins MA, Baptestini FM, Campos RC, Gabriel Oliveira GHH, Nunes EHM (2018) Developing predictive models for determining physical properties of coffee beans during the roasting process. Ind Crops Prod 112:839–845. https://doi.org/10.1016/j.indcrop.2017.12.015

    Article  CAS  Google Scholar 

  21. Pires LF, Borges JAR, Rosa JA, Cooper M, Heck RJ, Passoni S, Roque WL (2017) Soil structure changes induced by tillage systems. Soil Tillage Res 165:66–79. https://doi.org/10.1016/j.still.2016.07.010

    Article  Google Scholar 

  22. Baird E, Taylor G (2017) X-ray micro computed-tomography. Curr Biol 27(8):R289–R291. https://doi.org/10.1016/j.cub.2017.01.066

    Article  CAS  PubMed  Google Scholar 

  23. Pereira LL, Debona DG, Oliveira GF, Caten CST (2020b) From the raw to the roasted coffee bean. from the raw to the roasted coffee bean. 1edn. Springer Nature, Germany, 1:527–628.

  24. Córdoba N, Moreno FL, Osorio C, Velásquez S, Ruiz Y (2021) Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Food Res Int 141:110141. https://doi.org/10.1016/j.foodres.2021.110141

    Article  CAS  PubMed  Google Scholar 

  25. Brazil (2003) Ministry of Agriculture, Livestock and Supply. Normative Instruction no. 8, of June 11, 2003. Approves the technical regulation on identity and quality for the classification of benefited grain-cru coffee. Official Journal of the Union: section 1: Executive Power, Brasília, DF, 4–6, [in Portuguese].

  26. SCAA (2013) SCAA Protocols cupping specialty coffee. Specialty Coffee Association of America 1–10. http://www.scaa.org/PDF/resources/cupping-protocols.pdf

  27. Chu B, Yu K, Zhao Y, He Y (2018) Development of noninvasive classification methods for different roasting degrees of coffee beans using hyperspectral imaging. Sensors 18(4):15. https://doi.org/10.3390/s18041259

    Article  CAS  Google Scholar 

  28. De Luca S, De Filippis M, Bucci R, Magrì AD, Magrì AL, Marini F (2016) Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchem J 129:348–361. https://doi.org/10.1016/j.microc.2016.07.021

    Article  CAS  Google Scholar 

  29. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  30. Bastos LF, de Araújo OMO, Machado AS, Oliveira DF, Lopes RT (2020) X-Ray Microtomography system applied in characterization of lightweight concrete structures. ASME J Nondestruc Eval 3(4):041002. https://doi.org/10.1115/1.4048147

    Article  Google Scholar 

  31. Ersoy O, Şen E, Aydar E, Tatar I, Çelik HH (2010) Surface area and volume measurements of volcanic ash particles using micro-computed tomography (micro-CT): a comparison with scanning electron microscope (SEM) stereoscopic imaging and geometric considerations. J Volcanol Geotherm Res 196(3–4):281–286. https://doi.org/10.1016/j.jvolgeores.2010.08.004

    Article  CAS  Google Scholar 

  32. Argenta MA, Buriol TM, Hecke MB (2010) Methodology for obtaining physical and geometric parameters of the trabecular bone function of micro tomography images (in Portuguese). Mecánica Comput 29:6363–6381

    Google Scholar 

  33. da Silva MCS, da Luz JMR, Veloso TGR, Gomes WS, Oliveira ECS, Anastácio LM, Cunha Neto A, Moreli AP, Guarçoni RC, Kasuya MCM, Pereira LL (2022) Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 248:1499–1512. https://doi.org/10.1007/s00217-022-03980-6

    Article  CAS  Google Scholar 

  34. Pramudita D, Araki T, Sagara Y, Tambunan AH (2017) Roasting and colouring curves for coffee beans with broad time-temperature variations. Food Bioprocess Technol 10(8):1509–1520. https://doi.org/10.1007/s11947-017-1912-5

    Article  Google Scholar 

  35. Martins SIFS, Van Boekel MAJS (2005) A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem 90(1–2):257–269. https://doi.org/10.1016/j.foodchem.2004.04.006

    Article  CAS  Google Scholar 

  36. Moreira ASP, Nunes FM, Domingues MR, Coimbra MA (2012) Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food Funct 9:903–915. https://doi.org/10.1039/c2fo30048f

    Article  CAS  Google Scholar 

  37. Schenker S, Handschin S, Frey B, Perren R, Escher F (2000) Pore structure of coffee beans affected by roasting conditions. J Food Sci 65(3):452–457. https://doi.org/10.1111/j.1365-2621.2000.tb16026.x

    Article  CAS  Google Scholar 

  38. Hernández JA, Heyd B, Trystram G (2008) Prediction of brightness and surface area kinetics during coffee roasting. J Food Eng 89(2):156–163. https://doi.org/10.1016/j.jfoodeng.2008.04.026

    Article  Google Scholar 

  39. Santos G (2013) Profile of volatile compounds of condensates obtained from the smoke generated in the roasting of coffee [thesis in Portuguese]. Universidade Federal de Lavras

  40. Gutiérrez C, Ortolá MD, Chiralt A, Fito P (1993) Análisis por meb de la porosidad del café tostado. In: 15th International Scientific Colloquium on Coffee (Ed.), Proceedings of the 15th Asic Colloquium, Paris. 15th International Scientific Colloquium on Coffee

  41. Bee S, Brando CHJ, Brumen G, Carvalhaes N, Kölling-Speer I, Speer K, Liverani FS, Teixeira AA, Teixeira ARR, Thomaziello RA, Viani R, Vitzthum OG (2005) The raw bean. In: Illy A, Viani R (eds) Espresso Coffee The Science of Quality, 2nd edn. Academic Press, New York

    Google Scholar 

  42. Pereira LL, Moreira TR (2021) Quality determinants in coffee production. In: Pereira LL, Moreira TR (eds), 1st edn. Springer Nature, Switzerland AG

  43. Cortez JG (2001) Effect of species and cultivars and agricultural and industrial processing on coffee beverage characteristics (in Portuguese). Universidade de São Paulo. https://doi.org/10.11606/T.11.2019.tde-20191220-124207

  44. Pimentel UF, Mellhem L, Filho JFSC, Calado VMA, Farah A (2020) Modeling of operating roasting conditions and analysis of their effects on coffee color. Braz J Dev 6(11):85195–85204. https://doi.org/10.34117/bjdv6n11-076

  45. Schwartzberg HG (2002) Modeling bean heating during batch roasting of coffee beans. Engineering and Food for the 21st Century, 871–890. https://doi.org/10.1201/9781420010169-67

  46. Fadai NT, Melrose J, Please CP, Schulman A, Van Gorder RA (2017) A heat and mass transfer study of coffee bean roasting. Int J Heat Mass Transfer 104:787–799. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.083

    Article  Google Scholar 

  47. Moon JK, Shibamoto T (2009) Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. J Agric Food Chem 57(13):5823–5831. https://doi.org/10.1021/jf901136e

    Article  CAS  PubMed  Google Scholar 

  48. Cunha AR (2016) Model for the characterization of the connectivity of porous materials [Thesis, in Portuguese). Universidade Federal de Santa Catarina, Brazil. https://repositorio.ufsc.br/xmlui/handle/123456789/168277

  49. Schoeman L, Du Plessis A, Manley M (2016) Non-destructive characterisation and quantification of the effect of conventional oven and forced convection continuous tumble (FCCT) roasting on the three-dimensional microstructure of whole wheat kernels using X-ray micro-computed tomography (μCT). J Food Eng 187:1–13. https://doi.org/10.1016/j.jfoodeng.2016.04.015

    Article  Google Scholar 

  50. Brabant L, Vlassenbroeck J, De Witte Y, Cnudde V, Boone MN, Dewanckele J, Van Hoorebeke L (2011) Three-dimensional analysis of high-resolution X-ray computed tomography data with morpho+. Microsc Microanal 17(2):252–263. https://doi.org/10.1017/S1431927610094389

    Article  CAS  PubMed  Google Scholar 

  51. Cloete KJ, Šmit Ž, Minnis-Ndimba R, Vavpetič P, du Plessis A, Le Roux SG, Pelicon P (2019) Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission. Food Chem X 2:100032. https://doi.org/10.1016/j.fochx.2019.100032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang N, Liu C, Liu X, Degn TK, Munchow M, Fisk I (2016) Determination of volatile marker compounds of common coffee roast defects. Food Chem 211:206–214. https://doi.org/10.1016/j.foodchem.2016.04.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sul Serrana of Espírito Santo Free Admission Credit Cooperative—Sicoob (23186000886201801), FAPEMIG (Fundação de Amparo à Pesquisa de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Código de Financiamento 001), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologia), and Instituto Federal do Espírito Santo, for supporting the research, through the PRPPG n°. 10/2019—Productivity Researcher Program—PPP and the Q-Graders for their cooperation in this study. We are also very thankful to Núcleo de Microscopia e Microanálises (NMM) of the Universidade Federal de Viçosa, where the X-ray microtomography analyses were performed and Cropster Brasil for donating the license for Cropster software.

Funding

The Sul Serrana of Espírito Santo Free Admission Credit Cooperative—Sicoob (23186000886201801), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Código de Financiamento 001), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologia—Código 304087/2020–3), and Instituto Federal do Espírito Santo, for supporting the research through the PRPPG no. 10/2019—Productivity Researcher Program—PPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Louzada Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

All procedures performed in studies involving human participants were in accordance with the ethical standards of Sensory Dimensions, United Kingdom.

Informed consent

All participants of the QDA and Napping panels were provided with consent forms before taking part in this study at Sensory Dimensions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

217_2022_4118_MOESM1_ESM.png

Projections in 2D (upper) and 3D (bottom) of the coffee beans submitted to baked, light, medium, and dark roasting. Arrows show the pores. (PNG 639 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastácio, L.M., da Silva, M.C.S., Debona, D.G. et al. Relationship between physical changes in the coffee bean due to roasting profiles and the sensory attributes of the coffee beverage. Eur Food Res Technol 249, 327–339 (2023). https://doi.org/10.1007/s00217-022-04118-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04118-4

Keywords

Navigation