Skip to main content
Log in

Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pectin production is complex, and final product quality assessment is generally accomplished at the end of the process using time-consuming off-line laboratory analysis. In this study, pectin was extracted from lime peel either by acid or by enzymes. Fourier transform infrared spectroscopy and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed a higher degree of esterification (DE 82 %) than pectin extracted by acid (DE 67 %) and was moreover found to be more heterogeneously esterified when probed with the monoclonal antibodies JIM5, JIM7, and LM20. The data infer that enzymatic pectin extraction allows for extraction of complex, high DE pectin, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, S. K., Hansen, P. W., & Andersen, H. V. (2006). Vibrational Spectroscopy in the Analysis of Dairy Products and Wine. Handbook of Vibrational Spectroscopy. doi:10.1002/0470027320.s6602.

  • Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777.

    Article  CAS  Google Scholar 

  • Baum, A., Hansen, P. W., Meyer, A. S., & Mikkelsen, J. D. (2013a). Simultaneous measurement of two enzyme activities using infrared spectroscopy: a comparative evaluation of PARAFAC, TUCKER and N-PLS modeling. Analytica Chimica Acta, 790, 14–23.

    Article  CAS  Google Scholar 

  • Baum, A., Meyer, A. S., Garcia, J. L., Egebo, M., Hansen, P. W., & Mikkelsen, J. D. (2013b). Enzyme activity measurement via spectral evolution profiling and PARAFAC. Analytica Chimica Acta, 778, 1–8.

    Article  CAS  Google Scholar 

  • Beebe, K. R., & Kowalski, B. R. (1987). An introduction to multivariate calibration and analysis. Analytical Chemistry, 59(17), 1007A–1017A.

    Article  CAS  Google Scholar 

  • Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7(1), 1.

    Article  Google Scholar 

  • Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484–489.

    Article  CAS  Google Scholar 

  • Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. (2015). Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24, 72–79.

    Article  CAS  Google Scholar 

  • Bro, R., & Smilde, A. (2003). Centering and scaling in component analysis. Journal of Chemometrics, 17(1), 16–33.

    Article  CAS  Google Scholar 

  • Ciriminna, R., Chavarría-Hernández, N., Inés Rodríguez Hernández, A., & Pagliaro, M. (2015). Pectin: a new perspective from the biorefinery standpoint. Biofuels, Bioproducts and Biorefining, 9(4), 368–377.

    Article  CAS  Google Scholar 

  • Clausen, M. H., Willats, W. G. T., & Knox, J. P. (2003). Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Research, 338(17), 1797–1800.

    Article  CAS  Google Scholar 

  • Coimbra, M. A., Barros, A., Barros, M., Rutledge, D. N., & Delgadillo, I. (1998). Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydrate Polymers, 37(3), 241–248.

    Article  CAS  Google Scholar 

  • Coimbra, M. A., Barros, A., Rutledge, D. N., & Delgadillo, I. (1999). FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research, 317(1), 145–154.

    Article  CAS  Google Scholar 

  • de Paz, J. L., & Seeberger P. H. (2012). Recent advances and future challenges in glycan microarray technology. In Y. Chevolot (Ed.), Carbohydrate Microarrays: Methods and Protocols. Methods in Molecular Biology (pp 1–12). Humana Press.

  • Dominiak, M., Wichmann, J., Vidal Melgosa, S., Willats, W., Meyer, A., Søndergaard, K., & Mikkelsen, J. (2014). Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocolloids, 40, 273–282.

    Article  CAS  Google Scholar 

  • Fangel J. U., Pedersen H. L., Vidal-Melgosa S., Ahl L. I., Salmean A. A., Egelund J., et al. (2012) Carbohydrate microarrays in plant science. In J. Normanly (Ed.), High-Throughput Phenotyping in Plants: Methods and Protocols. Methods in Molecular Biology (pp 351–62). Humana Press

  • Fellah, A., Anjukandi, P., Waterland, M. R., & Williams, M. A. K. (2009). Determining the degree of methylesterification of pectin by ATR/FT-IR: methodology optimisation and comparison with theoretical calculations. Carbohydrate Polymers, 78(4), 847–853.

    Article  CAS  Google Scholar 

  • Geladi, P., MacDougall, D., & Martens, H. (1985). Linearization and scatter-correction for near-infrared reflectance spectra of meat. Applied Spectroscopy, 39(3), 491–500.

    Article  Google Scholar 

  • Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100.

    Article  CAS  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417.

    Article  Google Scholar 

  • Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 [−>] 4)-[beta]-D-galactan. Plant Physiology, 113(4), 1405–1412.

    Article  CAS  Google Scholar 

  • Kacurakova, M., Capek, P., Sasinkova, V., Wellner, N., & Ebringerova, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43(2), 195–203.

    Article  CAS  Google Scholar 

  • Kačuráková, M., Wellner, N., Ebringerová, A., Hromádková, Z., Wilson, R., & Belton, P. (1999). Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloids, 13(1), 35–41.

    Article  Google Scholar 

  • Kuligowski, J., Cascant, M., Garrigues, S., & de la Guardia, M. (2012). An infrared spectroscopic tool for process monitoring: sugar contents during the production of a depilatory formulation. Talanta, 99, 660–667.

    Article  CAS  Google Scholar 

  • Lim, J., Yoo, J., Ko, S., & Lee, S. (2012). Extraction and characterization of pectin from Yuza (Citrus junos) pomace: a comparison of conventional-chemical and combined physical–enzymatic extractions. Food Hydrocolloids, 29(1), 160–165.

    Article  CAS  Google Scholar 

  • Limberg, G., Körner, R., Buchholt, H. C., Christensen, T. M. I. E., Roepstorff, P., & Mikkelsen, J. D. (2000). Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydrate Research, 327(3), 293–307.

    Article  CAS  Google Scholar 

  • Nicolaou, N., Xu, Y., & Goodacre, R. (2010). Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. Journal of Dairy Science, 93(12), 5651–5660.

    Article  CAS  Google Scholar 

  • Nielsen, B. U. (1996). Fiber-based fat mimetics: pectin. In S. Roller & S. A. Jones (Eds.), Handbook of fat replacers (pp. 161–173). Boca Raton: CRC Press.

    Google Scholar 

  • Ralet, M.-C., Tranquet, O., Poulain, D., Moïse, A., & Guillon, F. (2010). Monoclonal antibodies to rhamnogalacturonan I backbone. Planta, 231(6), 1373–1383.

    Article  CAS  Google Scholar 

  • Rohman, A., & Man, Y. B. C. (2010). Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International, 43(3), 886–892.

    Article  CAS  Google Scholar 

  • Rolin, C., Nielsen, B. U., & Glahn, P. E. (1998). In S. Dumitriu (Ed.), Polysaccharides–structural diversity and functional versatility (pp. 377–431). New York: Marcel Dekker Inc.

    Google Scholar 

  • Rudolph B., & Petersen S. A. (2011). US Patent App. 13/013,709 Pub: US20120190831 A1. Methods for Steam Flash Extraction of Pectin. Cp Kelco Aps, assignee. United States

  • Sørensen, I., & Willats, W. G. T. (2011). Screening and characterization of plant cell walls using carbohydrate microarrays. In Z. Popper (Ed.), The plant cell wall: methods and protocols. Methods in Molecular Biology (pp 115–121). India: Humana Press.

  • van den Hoogen, B. M., van Weeren, P. R., Lopes-Cardozo, M., van Golde, L. M. G., Barneveld, A., & van de Lest, C. H. A. (1998). A microtiter plate assay for the determination of uronic acids. Analytical Biochemistry, 257(2), 107–111.

    Article  Google Scholar 

  • Verhertbruggen, Y., Marcus, S. E., Haeger, A., Ordaz-Ortiz, J. J., & Knox, J. P. (2009). An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research, 344(14), 1858–1862.

    Article  CAS  Google Scholar 

  • Voragen, F., Beldman, G., & Schols, H. (2008). Chemistry and enzymology of pectins. Advanced dietary fibre technology, 379–397. doi:10.1002/9780470999615.ch33.

  • Voragen, A. G. J., Schols, H. A., & Pilnik, W. (1986). Determination of the degree of methylation and acetylation of pectins by h.p.l.c. Food Hydrocolloids, 1(1), 65–70.

    Article  CAS  Google Scholar 

  • Wellner, N., Kačuráková, M., Malovíková, A., Wilson, R. H., & Belton, P. S. (1998). FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydrate Research, 308(1), 123–131.

    Article  CAS  Google Scholar 

  • Wikiera, A., Mika, M., & Grabacka, M. (2015). Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocolloids, 44, 151–161.

    Article  Google Scholar 

  • Willats, W. G. T., Marcus, S. E., & Knox, J. P. (1998). Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan. Carbohydrate Research, 308(1), 149–152.

    Article  CAS  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  CAS  Google Scholar 

  • Zykwinska, A., Boiffard, M.-H., Kontkanen, H., Buchert, J., Thibault, J.-F., & Bonnin, E. (2008). Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. Journal of Agricultural and Food Chemistry, 56(19), 8926–8935.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the Seventh Framework Program via the Marie Curie Initial Training Network, LeanGreenFood (EU-ITN 238084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Baum.

Additional information

Andreas Baum and Malgorzata Dominiak contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, A., Dominiak, M., Vidal-Melgosa, S. et al. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis. Food Bioprocess Technol 10, 143–154 (2017). https://doi.org/10.1007/s11947-016-1802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1802-2

Keywords

Navigation