Skip to main content
Log in

Optimization of Instant Controlled Pressure Drop (DIC)-Assisted Dehydrofreezing Using Mechanical Texture Measurements Versus Initial Water Content of Apple

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work deals with instant controlled pressure drop (DIC)-assisted dehydrofreezing process as an innovative preservation method. Its objective was to assess the impact of combined unit operations (air drying–DIC treatment–freezing/thawing) on apple firmness. Golden delicious apple samples with initial water content (W) of 700 % dry basis (db) were subjected to air drying reaching different W values (200, 166, 115, 64, 30 % db). Then, these partially dried samples were DIC-treated at different conditions following a design of experiment (DoE). Treated samples were frozen at −30 °C and thawed at 4 °C overnight. Values of firmness defined as puncture rupture force were used to define the textural impacts of different operations of partial air drying–DIC treatment–freezing/thawing. The results showed that the lower is the apple water content (between 200 and 30 % db), the higher is the firmness. DIC treatment had insignificant effect on firmness. Conversely, great firmness decrease was perceived for freezing/thawing of fresh and high water content samples (>200 % db). However, this freezing effect disappeared, and the firmness kept constant once the water content was lower than 166 % db. This “freezing critical level” was obtained at higher level (200 % db) for DIC-treated samples. DoE and response surface methodology (RSM) confirmed that water content was the most influencing DIC operative parameter in terms of apple firmness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agnelli, M. E., Marani, C. M., & Mascheroni, R. H. (2005). Modelling of heat and mass transfer during (osmo) dehydrofreezing of fruits. Journal of Food Engineering, 69(4), 415–424. doi:10.1016/j.jfoodeng.2004.08.034.

    Article  Google Scholar 

  • Ando, H., Kajiwara, K., Oshita, S., & Suzuki, T. (2012). The effect of osmotic dehydrofreezing on the role of the cell membrane in carrot texture softening after freeze-thawing. Journal of Food Engineering, 108(3), 473–479. doi:10.1016/j.jfoodeng.2011.08.013.

    Article  Google Scholar 

  • AOAC 1990. Association of Official Analytical Chemists (15th edn). In K. Helrich (Ed.). Arlington: Virginia 22201, USA.

  • Ben Ammar, J., Lanoisellé, J.-L., Lebovka, N., Van Hecke, E., & Vorobiev, E. (2010). Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophysics, 5(3), 247–254. doi:10.1007/s11483-010-9167-y.

    Article  Google Scholar 

  • Biswal, R. N., Bozorgmehr, K., Tompkins, F. D., & Liu, X. (1991). Osmotic concentration of green beans prior to freezing. Journal of Food Science, 56(4), 1008–1012. doi:10.1111/j.1365-2621.1991.tb14628.x.

    Article  Google Scholar 

  • Blanda, G., Cerretani, L., Cardinali, A., Barbieri, S., Bendini, A., & Lercker, G. (2009). Osmotic dehydrofreezing of strawberries: polyphenolic content, volatile profile and consumer acceptance. LWT--Food Science and Technology, 42(1), 30–36. doi:10.1016/j.lwt.2008.07.002.

    Article  CAS  Google Scholar 

  • Bolin, H. R., & Huxsoll, C. C. (1993). Partial drying of cut pears to improve freeze/thaw texture. Journal of Food Science, 58(2), 357–360. doi:10.1111/j.1365-2621.1993.tb04274.x.

    Article  Google Scholar 

  • Bunger, A., Moyano, P., Vega, R., Guerrero, P., & Osorio, F. (2004). Osmotic dehydration and freezing as combined processes on apple preservation. Food Science and Technology International, 10(3), 163–170.

    Article  Google Scholar 

  • Chen, L., & Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed foods—a review. Journal of Food Engineering, 119(3), 497–507. doi:10.1016/j.jfoodeng.2013.06.028.

    Article  Google Scholar 

  • Chiralt, A., Martínez-Navarrete, N., Martínez-Monzó, J., Talens, P., Moraga, G., Ayala, A., et al. (2001). Changes in mechanical properties throughout osmotic processes: cryoprotectant effect. Journal of Food Engineering, 49(2–3), 129–135. doi:10.1016/S0260-8774(00)00203-X.

    Article  Google Scholar 

  • Delgado, A. E., & Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. LWT--Food Science and Technology, 38(2), 135–142. doi:10.1016/j.lwt.2004.04.015.

    Article  CAS  Google Scholar 

  • Dermesonlouoglou, E. K., Giannakourou, M. C., & Taoukis, P. (2007). Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering, 78(1), 272–280. doi:10.1016/j.jfoodeng.2005.09.026.

    Article  CAS  Google Scholar 

  • Dermesonlouoglou, E. K., Pourgouri, S., & Taoukis, P. S. (2008). Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science & Emerging Technologies, 9(4), 542–549. doi:10.1016/j.ifset.2008.01.002.

    Article  Google Scholar 

  • Floury, J., Le Bail, A., & Pham, Q. T. (2008). A three-dimensional numerical simulation of the osmotic dehydration of mango and effect of freezing on the mass transfer rates. Journal of Food Engineering, 85(1), 1–11. doi:10.1016/j.jfoodeng.2007.06.011.

    Article  Google Scholar 

  • Forni, E., Sormani, A., Scalise, S., & Torreggiani, D. (1997). The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Research International, 30(2), 87–94. doi:10.1016/S0963-9969(97)00038-0.

    Article  CAS  Google Scholar 

  • Giannakourou, M. C., & Taoukis, P. S. (2003). Stability of dehydrofrozen green peas pretreated with nonconventional osmotic agents. Journal of Food Science, 68(6), 2002–2010. doi:10.1111/j.1365-2621.2003.tb07009.x.

    Article  CAS  Google Scholar 

  • Goula, A. M., & Lazarides, H. N. (2012). Modeling of mass and heat transfer during combined processes of osmotic dehydration and freezing (osmo-dehydro-freezing). Chemical Engineering Science, 82, 52–61. doi:10.1016/j.ces.2012.07.023.

    Article  CAS  Google Scholar 

  • Haddad, M. A., Mounir, S., Sobolik, V., Allaf, K. (2008). Fruits & vegetables drying combining hot air, DIC technology and microwaves. International Journal of Food Engineering, 4(6).

  • Iguedjtal, T., Louka, N., & Allaf, K. (2008). Sorption isotherms of potato slices dried and texturized by controlled sudden decompression. Journal of Food Engineering, 85(2), 180–190. doi:10.1016/j.jfoodeng.2007.06.028.

    Article  Google Scholar 

  • Ilicali, C., & Icier, F. (2010). Freezing time prediction for partially dried papaya puree with infinite cylinder geometry. Journal of Food Engineering, 100(4), 696–704. doi:10.1016/j.jfoodeng.2010.05.022.

    Article  Google Scholar 

  • James, C., Purnell, G., & James, S. (2014). A critical review of dehydrofreezing of fruits and vegetables. Food and Bioprocess Technology, 7(5), 1219–1234. doi:10.1007/s11947-014-1293-y.

    Article  Google Scholar 

  • Li, B., & Sun, D.-W. (2002). Novel methods for rapid freezing and thawing of foods—a review. Journal of Food Engineering, 54(3), 175–182. doi:10.1016/S0260-8774(01)00209-6.

    Article  Google Scholar 

  • Maestrelli, A., Lo Scalzo, R., Lupi, D., Bertolo, G., & Torreggiani, D. (2001). Partial removal of water before freezing: cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). Journal of Food Engineering, 49(2–3), 255–260. doi:10.1016/S0260-8774(00)00211-9.

    Article  Google Scholar 

  • Marani, C. M., Agnelli, M. E., & Mascheroni, R. H. (2007). Osmo-frozen fruits: mass transfer and quality evaluation. Journal of Food Engineering, 79(4), 1122–1130. doi:10.1016/j.jfoodeng.2006.03.022.

    Article  CAS  Google Scholar 

  • Maritza, A. M., Sabah, M., Anaberta, C. M., Montejano-Gaitán, J. G., & Allaf, K. (2012). Comparative study of various drying processes at physical and chemical properties of strawberries (Fragaria var camarosa). Procedia Engineering, 42, 267–282. doi:10.1016/j.proeng.2012.07.418.

    Article  Google Scholar 

  • Moraga, G., MartÍNez-Navarrete, N., & Chiralt, A. (2006). Compositional changes of strawberry due to dehydration, cold storage and freezing–thawing processes. Journal of Food Processing and Preservation, 30(4), 458–474. doi:10.1111/j.1745-4549.2006.00079.x.

    Article  Google Scholar 

  • Mounir, S., Besombes, C., Al-Bitar, N., & Allaf, K. (2011). Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of apple and onion. Drying Technology, 29(3), 331–341.

    Article  CAS  Google Scholar 

  • Ohnishi, S., & Miyawaki, O. (2005). Osmotic dehydrofreezing for protection of rheological properties of agricultural products from freezing-injury. Food Science and Technology Research, 11(1), 52–58. doi:10.3136/fstr.11.52.

    Article  Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275. doi:10.1016/j.jfoodeng.2010.02.026.

    Article  Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2012). Quality evaluation of pineapple fruit during drying process. Food and Bioproducts Processing, 90(2), 275–283. doi:10.1016/j.fbp.2011.06.001.

    Article  CAS  Google Scholar 

  • Rincon, A., & Kerr, W. L. (2010). Influence of osmotic dehydration, ripeness and frozen storage on physicochemical properties of mango. Journal of Food Processing and Preservation, 34(5), 887–903. doi:10.1111/j.1745-4549.2009.00404.x.

    Article  CAS  Google Scholar 

  • Robbers, M., Singh, R. P., & Cunha, L. M. (1997). Osmotic-convective dehydrofreezing process for drying kiwifruit. Journal of Food Science, 62(5), 1039–1042. doi:10.1111/j.1365-2621.1997.tb15033.x.

    Article  CAS  Google Scholar 

  • Sormani, A., Maffi, D., Bertolo, G., & Torreggiani, D. (1999). Textural and structural changes of dehydrofreeze-thawed strawberry slices: effects of different dehydration pretreatments/Cambios texturales y estructurales de rodajas de fresa deshidratadas y descongeladas: efectos de diferentes pretratamientos de deshidratación. Food Science and Technology International, 5(6), 479–485. doi:10.1177/108201329900500605.

    Article  Google Scholar 

  • Talens, P., MartÍnez-Navarrete, N., Fito, P., & Chiralt, A. (2002). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science & Emerging Technologies, 3(2), 191–199. doi:10.1016/S1466-8564(02)00027-9.

    Article  Google Scholar 

  • Téllez-Pérez, C., Sabah, M. M., Montejano-Gaitán, J. G., Sobolik, V., Martínez, C. A., & Allaf, K. (2012). Impact of instant controlled pressure drop treatment on dehydration and rehydration kinetics of green Moroccan pepper (Capsicum annuum). Procedia Engineering, 42, 978–1003. doi:10.1016/j.proeng.2012.07.491.

    Article  Google Scholar 

  • Tregunno, N. B., & Goff, H. D. (1996). Osmodehydrofreezing of apples: structural and textural effects. Food Research International, 29(5–6), 471–479. doi:10.1016/S0963-9969(96)00056-7.

    Article  Google Scholar 

  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., et al. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653. doi:10.1016/j.foodchem.2009.04.066.

    Article  Google Scholar 

  • Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., et al. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51–59. doi:10.1016/j.foodchem.2011.10.029.

    Article  Google Scholar 

  • Wu, L., Orikasa, T., Tokuyasu, K., Shiina, T., & Tagawa, A. (2009). Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: effects of process conditions on the quality attributes of the samples. Journal of Food Engineering, 91(4), 560–565. doi:10.1016/j.jfoodeng.2008.10.021.

    Article  Google Scholar 

  • Wu, B., Pan, Z., Qu, W., Wang, B., Wang, J., & Ma, H. (2014). Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices. LWT--Food Science and Technology, 57(1), 90–98. doi:10.1016/j.lwt.2013.11.035.

    Article  CAS  Google Scholar 

  • Xie, J., & Zhao, Y. (2004). Use of vacuum impregnation to develop high quality and nutritionally fortified frozen strawberries. Journal of Food Processing and Preservation, 28(2), 117–132.

    Article  Google Scholar 

  • Zhu, Y., Pan, Z., McHugh, T. H., & Barrett, D. M. (2010). Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of Food Engineering, 97(1), 8–16. doi:10.1016/j.jfoodeng.2009.07.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Allaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Haj Said, L., Bellagha, S. & Allaf, K. Optimization of Instant Controlled Pressure Drop (DIC)-Assisted Dehydrofreezing Using Mechanical Texture Measurements Versus Initial Water Content of Apple. Food Bioprocess Technol 8, 1102–1112 (2015). https://doi.org/10.1007/s11947-015-1475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1475-2

Keywords

Navigation