Skip to main content
Log in

Effect of a Pulsed Electric Field and Osmotic Treatment on Freezing of Potato Tissue

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work discusses the effects of pulsed electric field (PEF) and osmotic pre-treatments on potato tissue structure and on the freezing and freeze-drying behaviour of this tissue. Potato samples (26-mm diameter, 10-mm height) were treated by PEF (400 V/cm) to high level of disintegration (conductivity disintegration index Z was ≈0.95) and were subjected to osmotic treatment in an aqueous solution of NaCl. The samples were either frozen in an air-blast freezer at air temperature of −80 °C and velocity of 2 m/s or freeze-dried at 0 °C and 0.04-mbar pressure. The scanning electron microscope (SEM) images evidenced similarity in structure of the cell walls and area and morphology of starch granules for untreated and PEF-treated potato tissues. However, sequential (PEF + osmotic) pre-treatment of potato tissue resulted in starch granules with rougher surface. The profiles of freezing curves were strongly dependent on pre-treatment. The longest effective freezing time t f was observed for untreated tissue, and the values of t f were decreasing in the following sequence: untreated > PEF pre-treated > PEF + osmotically pre-treated. The faster freezing and freeze drying and visually better quality of the dried samples were observed for PEF or sequential PEF + osmotic pre-treatments. The SEM analysis revealed also a noticeable disorder of starch granule surface morphology inside the cells of the freeze-dried potatoes after sequential PEF + osmotic pre-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.M. Phillips, K.M. Wunderlich, J.M. Holden, J. Exler, S.E. Gebhardt, D.B. Haytowitz, G.R. Beecher, R.F. Doherty, Food Chem. 92, 587–595 (2005)

    Article  CAS  Google Scholar 

  2. A.E. Delgado, D.W. Sun, J. Food Eng. 47, 157–174 (2001)

    Article  Google Scholar 

  3. B. Li, D.-W. Sun, J. Food Eng. 54, 175–182 (2002)

    Article  Google Scholar 

  4. M.T. Kalichevsky, D. Knorr, P.J. Lillford, Trends Food Sci. Technol. 6, 253–258 (1995)

    Article  CAS  Google Scholar 

  5. M.N. Martino, L. Otero, P.D. Sanz, N.E. Zaritzky, Meat Sci. 50, 303–313 (1998)

    Article  CAS  Google Scholar 

  6. D. Chevalier, A. Le Bail, M. Ghoul, J. Food Eng. 46, 277–285 (2000)

    Article  Google Scholar 

  7. C. Luscher, O. Schlüter, D. Knorr, Innovative Food Sci. Emer. Technol. 6(1), 59–71 (2005)

    Article  Google Scholar 

  8. B. Li, D.-W. Sun, J. Food Eng. 55(3), 277–282 (2002)

    Article  Google Scholar 

  9. D.-W. Sun, B. Li, J. Food Eng. 57(4), 337–345 (2003)

    Article  Google Scholar 

  10. J.D. Ponting, G.G. Watters, G.G. Forrey, R.R. Jackson, R. Stanley, Food Technol. 20, 125 (1966)

    CAS  Google Scholar 

  11. G.W. Hope, D.G. Vitale. Osmotic dehydration, a cheap and simple method of preserving mangoes, bananas and plantains. Report IDRC 004. International Development Research Centre, Ottawa, Canada, 1–12 (1972)

  12. J.D. Ponting, Process Biochem. 8, 18 (1973)

    CAS  Google Scholar 

  13. G.M. Dixon, J.J. Jen, J. Food Sci. 42, 1126 (1977)

    Article  CAS  Google Scholar 

  14. J.H. Moy, N.B.H. Lau, A.M. Dollar, J. Food Process Preserv. 2, 131 (1978)

    Article  CAS  Google Scholar 

  15. J.E. Contreras, T.G. Smyrl, J. Food Sci. Technol. 14, 310 (1981)

    Google Scholar 

  16. E. Maltini, D. Torreggiani. A new application of osmosis: the production of shelf-stable fruits by osmosis. In: Progress in Food Eng. 246th Event Europ. Food. Chem. Eng., Milan, Italy (1981)

  17. J. Conway, G. Castaigne, G. Picard, X. Vovan, Food Sci. Technol. J. 16, 25 (1983)

    Google Scholar 

  18. T.R.A. Magee, A.A. Hassaballah, W.R. Murphy, J. Food Sci. 7, 145 (1983)

    Google Scholar 

  19. A. Lenart, J.M. Flink, J. Food Technol. 19, 65 (1984)

    Google Scholar 

  20. M. Le Maguer. Osmotic dehydration: review and future direction. In: Proceedings of the International Symposium on Progress in Food Preservation processes, 1, 283–309, CERIA, Brussels (1988)

  21. C.R. Lerici, G. Pinnavaia, M. Dalla Rosa, L. Bartolucci, J. Food Sci. 50, 1217 (1985)

    Article  CAS  Google Scholar 

  22. A.L. Raoult-Wack, S. Guibert, M. Le Maguer, G. Rios, Drying Technol. 9, 589 (1991)

    Article  Google Scholar 

  23. A. Chiralt, N. Martinez-Navarrete, J. Martinez-Monzo, P. Talens, G. Moraga, A. Ayala, P. Fito, J. Food Eng. 49, 129–135 (2001)

    Article  Google Scholar 

  24. A. Maestrelli, R. Lo Scalzo, D. Lupi, G. Bertolo, D. Torreggiani, J. Food Eng. 49, 255–260 (2001)

    Article  Google Scholar 

  25. M. Jalté, J.-L. Lanoisellé, N.I. Lebovka, E. Vorobiev, LWT 42, 576–580 (2009)

    Article  Google Scholar 

  26. J.C. Weaver, YuA Chizmadzhev, Bioelectrochem. Bioenerg. 41(1), 135–160 (1996)

    Article  CAS  Google Scholar 

  27. E. Vorobiev, N.I. Lebovka, Extraction of intercellular components by pulsed electric fields, in Pulsed electric field technology for food industry: fundamentals and applications, ed. by J. Raso, V. Heinz (Springer, New-York, 2006), pp. 153–193

    Chapter  Google Scholar 

  28. N.I. Lebovka, M.V. Shynkaryk, K. El-Belghiti, H. Benjelloun, E. Vorobiev, J. Food Eng. 80, 639–644 (2007)

    Article  Google Scholar 

  29. M. Fincan, P. Dejmek, J. Food Eng. 55, 223–230 (2002)

    Article  Google Scholar 

  30. T. Kotnik, G. Pucihar, M. Rebersek, D. Miklavcic, L.M. Mir, Biochim. Biophys. Acta (BBA)—Biomembr. 1614, 193–200 (2003)

    Article  CAS  Google Scholar 

  31. A.B. Nietoa, D.M. Salvatoria, M.A. Castrob, S.M. Alzamora, J. Food Eng. 61(2), 269–278 (2004)

    Article  Google Scholar 

  32. N.I. Lebovka, M.I. Bazhal, E. Vorobiev, J. Food Eng. 54, 337–346 (2002)

    Article  Google Scholar 

  33. B.R. Brasher, D.P. Franzmeier, V. Valassis, S.E. Davidson, Soil Sci. 101, 108 (1966)

    Article  Google Scholar 

  34. A.L. Tisdall, Aust. J. Agric. Res. 2, 349–354 (1951)

    Article  Google Scholar 

  35. L. Bøgh-Sørensen, Recommendations for the processing and handling of frozen foods (4th Ed.). International Institute of Refrigeration (IIR), Paris, 8–10 (2006).

  36. S.S. Winter, A.A. Loiselle, J. Colloid Sci. 13, 576–583 (1958)

    Article  CAS  Google Scholar 

  37. W.X. Zhu, J. Gayin, F. Chatel, K. Dewettinck, P. Van der Meeren, Food Hydrocolloids 23(8), 2204–2211 (2009)

    Article  CAS  Google Scholar 

  38. F. De Vito, G. Ferrari, N.I. Lebovka, N.V. Shynkaryk, E. Vorobiev, Food Bioprocess Technol. 1, 307–313 (2008)

    Article  Google Scholar 

  39. F. Franks, Biophysics and biochemistry at low temperatures (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  40. M. Toner, E.G. Cravalho, M. Karel, J. Appl. Phys. 67, 1582–1593 (1990)

    Article  Google Scholar 

  41. F. Krok, J. Szymonska, P. Tomasik, M. Szymonski, Appl. Surf. Sci. 157(4), 382–386 (2000)

    Article  CAS  Google Scholar 

  42. J. Szymonska, F. Krok, E. Komorowska-Czepirska, K. Rebilas, Carbohydr. Polym. 52(1), 1–10 (2003)

    Article  CAS  Google Scholar 

  43. J. Szymonska, F. Krok, P. Tomasik, J. Biol. Macromol. 27(4), 307–314 (2000)

    Article  CAS  Google Scholar 

  44. P. Liu, L. Chen, P.A. Corrigan, L. Yu, Z. Liu, J. Food Eng. 4(8), 1–25 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the “Pole Regional Genie des Procedes” (Picardie, France). Authors also thank Dr. N.S. Pivovarova for her help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Lanoisellé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Ammar, J., Lanoisellé, JL., Lebovka, N.I. et al. Effect of a Pulsed Electric Field and Osmotic Treatment on Freezing of Potato Tissue. Food Biophysics 5, 247–254 (2010). https://doi.org/10.1007/s11483-010-9167-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9167-y

Keywords

Navigation