Skip to main content

Advertisement

Log in

Biocontrol of Shigella flexneri in Ground Beef and Vibrio cholerae in Seafood with Bacteriophage-Assisted High Hydrostatic Pressure (HHP) Treatment

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Virulent bacteriophages (VP) and high hydrostatic pressure (HHP) were studied for the inactivation of Shigella flexneri in ground beef and Vibrio cholerae in salmon and mussels. Inoculated foods were treated individually with HHP (150-450 MPa for 5 and 9 min, 300 MPa for 13 min, and 550 MPa for 5 min), with phages (cocktail of 3 S. flexneri or single V. cholerae phages, both applied at 109 PFU/mL) or combinations thereof (HHP/VP, VP/HHP). Stand-alone treatments with VP, HHP below 450 MPa (seafood) or 550 MPa (meat), and combined treatments of VP and HHP at 250 MPa for 5 min did not reduce bacterial counts below the detection limit. By contrast, complete inactivation of S. flexneri and V. cholerae (P < 0.05) was achieved at 550 MPa for 5 min or, more energy-efficient, at 350 MPa for 5 min followed by addition of phages, thus, indicating a combination of HHP and VP as an efficacious hurdle technology for meat and seafood processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abedon, S. T., Herschler, T. D., & Stopar, D. (2001). Bacteriophage latent-period evolution as a response to resource availability. Applied and Environmental Microbiology, 67(9), 4233–4241.

    Article  CAS  Google Scholar 

  • Ahmed, A. M., & Shimamoto, T. (2014). Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. from meat and dairy products in Egypt. International Journal of Food Microbiology, 168–169, 57–62.

  • Anany, H., Lingohr, E. J., Villegas, A., Ackermann, H., She, Y., Griffiths, M. W., et al. (2011). A Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virology Journal, 8, 242.

    Article  CAS  Google Scholar 

  • Arroyo, C., Cebrian, G., Mackey, B. M., Condon, S., & Pagan, R. (2011). Environmental factors influencing the inactivation of Cronobacter sakazakii by high hydrostatic pressure. International Journal of Food Microbiology, 147(2), 134–143.

    Article  CAS  Google Scholar 

  • Atterbury, R. J., Connerton, P. L., Dodd, C. E. R., Rees, C. E. D., & Connerton, I. F. (2003). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Applied and Environmental Microbiology, 69(10), 6302–6306.

    Article  CAS  Google Scholar 

  • Bach, S. J., McAllister, T. A., Veira, D. M., Gannon, V. P. J., & Holley, R. A. (2003). Effect of bacteriophage DC22 on Escherichia coli O157:H7 in an artificial rumen system (Rusitec) and inoculated sheep. Animal Research, 52(2), 89–101.

    Article  Google Scholar 

  • Bigwood, T., Hudson, J. A., Billington, C., Carey-Smith, G. V., & Heinemann, J. A. (2008). Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiology, 25(2), 400–406.

    Article  CAS  Google Scholar 

  • Buyukcan, M., Bozoglu, F., & Alpas, H. (2009). Preservation and shelf-life extension of shrimps and clams by high hydrostatic pressure. International Journal of Food Science and Technology, 44(8), 1495–1502.

    Article  CAS  Google Scholar 

  • Calik, H., Morrissey, M. T., Reno, P. W., & An, H. (2002). Effect of high-pressure processing on Vibrio parahaemolyticus strains in pure culture and Pacific oysters. Journal of Food Science, 67(4), 1506–1510.

    Article  CAS  Google Scholar 

  • Campos, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256–273.

    Article  Google Scholar 

  • Carey-Smith, G. V., Billington, C., Hudson, J. A., & Heinemann, J. A. (2006). Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiology Letters, 258(2), 182–186.

    Article  CAS  Google Scholar 

  • Carlton, R. M., Noordman, W. H., Biswas, B., De Meester, E. D., & Loessner, M. J. (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology, 43(3), 301–312.

    Article  CAS  Google Scholar 

  • CDC (2012). Vibrio cholerae infection. US Centers for Disease Control and Prevention. http://www.cdc.gov/cholera/general/. Accessed 9 Sept 2013.

  • Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S., & Yuk, H. G. (2012). Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehensive Reviews in Food Science and Food Safety, 11(2), 119–132.

    Article  Google Scholar 

  • Fioretto, F., Cruz, C., Largeteau, A., Sarli, T. A., Demazeau, G., & El Moueffak, A. (2005). Inactivation of Staphylococcus aureus and Salmonella ENTERITIDIS in tryptic soy broth and caviar samples by high pressure processing. Brazilian Journal of Medical and Biological Research, 38(8), 1259–1265.

  • Fouts, D. E., Klumpp, J., Bishop-Lilly, K. A., Rajavel, M., Willner, K. M., Butani, A., et al. (2013). Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity. Virology Journal, 10, 165.

    Article  CAS  Google Scholar 

  • Gao, Y., Qiu, W., Wu, D., & Fu, Q. (2011). Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Applied Biochemistry and Biotechnology, 164(7), 1083–1095.

    Article  CAS  Google Scholar 

  • Garcia-Graells, C., Masschalck, B., & Michiels, C. W. (1999). Inactivation of Escherichia coli in milk by high hydrostatic pressure treatment in combination with antimicrobial peptides. Journal of Food Protection, 62(11), 1248–1254.

    CAS  Google Scholar 

  • Goodridge, L. D., & Abedon, S. T. (2003). Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. Society for Industrial Microbiology News, 53(6), 254–262.

    Google Scholar 

  • Griffiths, M. W., & Walkling-Ribeiro, M. (2012). Microbial decontamination of milk and dairy products. In A. Demirci & M. O. Ngadi (Eds.), Microbial decontamination in the food industry: novel methods and applications (pp. 190–238). Cambridge, UK: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Guenther, S., Huwyler, D., Richard, S., & Loessner, M. J. (2009). Virulant bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and Environmental Microbiology, 75(1), 93–100.

    Article  CAS  Google Scholar 

  • Guenther, S., Herzig, O., Fieseler, L., Klumpp, J., & Loessner, M. J. (2012). Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. International Journal of Food Microbiology, 154(1–2), 66–72.

    Article  Google Scholar 

  • Hereu, A., Bover-Cid, S., Garriga, M., & Aymerich, T. (2012). High hydrostatic pressure and biopreservation of dry-cured ham to meet the food safety objectives for Listeria monocytogenes. International Journal of Food Microbiology, 154(3), 107–112.

    Article  Google Scholar 

  • Higgins, J. P., Higgins, S. E., Guenther, K. L., Huff, W., Donoghue, A. M., Donoghue, D. J., et al. (2005). Use of specific bacteriophage treatment to reduce Salmonella in poultry products. Poultry Science, 84(7), 1141–1145.

    Article  CAS  Google Scholar 

  • Hudson, J. A., Billington, C., Cornelius, A. J., Wilson, T., On, S. L. W., Premaratne, A., et al. (2013). Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiology, 36(1), 14–21.

    Article  CAS  Google Scholar 

  • Huehn, S., Eichhorn, C., Urmersbach, S., Breidenbach, J., Bechlars, S., Bier, N., et al. (2014). Pathogenic vibrios in environmental, seafood and clinical sources in Germany. International Journal of Medical Microbiology, 304(7), 843–850.

    Article  Google Scholar 

  • Hugas, M., Garriga, M., & Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Monells, Spain. PII: S0309-1740(02)00122-5.

  • Jofre, A., Aymerich, T., Bover-Cid, S., & Garriga, M. (2010). Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa. International Microbiology, 13(3), 105–112.

    CAS  Google Scholar 

  • Juliano, P., Bilbao-Sainz, C., Koutchma, T., Balasubramaniam, V. M., Clark, S., Stewart, C., et al. (2012). Shelf-stable egg-based products processed by high pressure thermal sterilization. Food Engineering Reviews, 4(1), 55–67.

    Article  Google Scholar 

  • Kim, D. H., Kim, K. B. W. R., & Ahn, D. H. (2013). Inhibitory effects of high-hydrostatic-pressure treatments on histamine production in mackerel (Scomber japonicus) muscle inoculated with Morganella morganii and Photobacterium phosphoreum. Food Control, 34(2), 307–311.

    Article  Google Scholar 

  • Krauss, H., Weber, A., Appel, M., Enders, B., Isenberg, H. D., Schiefer, H. G., et al. (2003). Zoonoses infectious diseases transmissible from animals to humans (3rd ed.). Washington, DC: ASM Press.

    Google Scholar 

  • Kural, A., Shearer, A., Kingsley, D., & Chen, H. (2008). Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology, 127(1–2), 1–5.

    Article  Google Scholar 

  • Lee, J., & Kaletunc, L. (2010). Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. International Journal of Food Microbiology, 140(1), 49–56.

    Article  CAS  Google Scholar 

  • Leverentz, B., Conway, W. S., Alavidze, Z., Janisiewicz, W. J., Fuchs, Y., Camp, M. J., et al. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. Journal of Food Protection, 64(8), 1116–1121.

    CAS  Google Scholar 

  • Lori, S., Buckow, R., Knorr, D., Heinz, V., & Lehmacheri, A. (2007). Predictive model for the inactivation of Campylobacter spp. by heat and high hydrostatic pressure. Journal of Food Protection, 70(9), 2023–2029.

    Google Scholar 

  • Mahony, J., Auliffe, O., Ross, R. P., & Van Sinderen, D. (2011). Bacteriophages as biocontrol agents of food pathogens. Current Opinion in Biotechnology, 22(2), 157–163.

    Article  CAS  Google Scholar 

  • Medina, M., Cabeza, M. C., Bravo, D., Cambero, I., Montiel, R., Ordonez, J. A., et al. (2009). A comparison between E-beam irradiation and high pressure treatment for cold-smoked salmon sanitation: microbiological aspects. Food Microbiology, 26(2), 224–227.

    Article  CAS  Google Scholar 

  • Mootian, G. K., Flimlin, G. E., Karwe, M. V., & Schaffner, D. W. (2013). Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat. Journal of Food Science, 78(2), E251–E257.

    Article  CAS  Google Scholar 

  • Myers, K., Montoya, D., Cannon, J., Dickson, J., & Sebranek, J. (2013). The effect of high hydrostatic pressure, sodium nitrite and salt concentration on the growth of Listeria monocytogenes on RTE ham and turkey. Meat Science, 93(2), 263–268.

    Article  CAS  Google Scholar 

  • O’Flynn, G., Ross, R. P., Fitzgerald, G. F., & Coffey, A. (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Applied and Environmental Microbiology, 70(6), 3417–3424.

    Article  Google Scholar 

  • Patterson, M. P., Mackle, A., & Linton, M. (2011). Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiology, 28(8), 1505–1508.

    Article  CAS  Google Scholar 

  • Ramaswamy, H. S., Zaman, S. U., & Smith, J. P. (2008). High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering, 87(1), 99–106.

    Article  Google Scholar 

  • Ritz, M., Pilet, M. F., Jugiau, F., Rama, F., & Federighi, M. (2006). Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments. Letters in Applied Microbiology, 42(4), 357–362.

    Article  CAS  Google Scholar 

  • San Martin, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627–645.

    Article  CAS  Google Scholar 

  • Sencer, B. (2012). High hydrostatic pressure treatment of beer and wine: a review. Innovative Food Science and Emerging Technologies, 13, 1–12.

  • Sivapalasingam, S., Nelson, J. M., Joyce, K., Hoekstra, M., Angulo, F. J., & Mintz, E. D. (2006). High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrobial Agents and Chemotherapy, 50(1), 49–54.

    Article  CAS  Google Scholar 

  • Styles, M. F., Hoover, D. G., & Farkas, D. F. (1991). Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. Journal of Food Science, 56(5), 1404–1407.

    Article  Google Scholar 

  • Tabla, R., Martínez, B., Rebollo, J. E., González, J., Ramírez, M. R., Roa, I., et al. (2012). Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. International Journal of Food Microbiology, 156(3), 209–213.

    Article  CAS  Google Scholar 

  • Vaudagna, S. R., Gonzalez, C. B., Guignon, B., Aparicio, C., Otero, L., & Sanz, P. D. (2012). The effects of high hydrostatic pressure at subzero temperature on the quality of ready-to-eat cured beef carpacio. Meat Science, 92(4), 575–581.

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro, M., Anany, H., & Griffiths, M. W. (2014). Effect of heat-assisted pulsed electric fields and bacteriophage on enterohemorrhagic Escherichia coli O157:H7. Biotechnology Progress. doi:10.1002/btpr.2014.

    Google Scholar 

  • Wang, Y., Liu, G. R., Gao, Y., Gui, M., & Li, P. L. (2013). Influence of high pressure on microbial growth and shelf-life of vacuum-packed sliced ham. Journal of Pure and Applied Microbiology, 7(2), 1255–1262.

    Google Scholar 

  • Whichard, J. M., Sriranganathan, N., & Pierson, F. W. (2003). Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. Journal of Food Protection, 66(2), 220–225.

    Google Scholar 

  • WHO (2012). Diarrhoeal disease shigellosis. Initiative for vaccine research (IVR). World Health Organization. http://www.who.int/immunization/research/en/. Accessed 11 May 2012.

  • Ye, M., Huang, Y. X., Gurtler, J. B., Niemira, B. A., Sites, J. E., & Chen, H. Q. (2013). Effects of pre- or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters. International Journal of Food Microbiology, 163(2–3), 146–152.

    Article  Google Scholar 

  • Yukizaki, C., Kawano, M., Tsumagari, H. (1992). The sterilization of sea urchin eggs by high hydrostatic pressure. In R. Hayashi (Ed), High pressure bioscience and food science (pp.225–228). Kyoto, Japan: San-ei Pub Co.

  • Zhang, H., Wang, R., & Bao, H. (2013). Phage inactivation of food borne Shigella on ready-to-eat spiced chicken. Processing, products, and food safety. Poultry Science, 92, 211–217.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support provided by the Natural Sciences and Engineering Research Council of Canada. The authors also acknowledge the use of the pilot plant facilities at the Guelph Food Research Centre, Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Walkling-Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, H., Anany, H., Walkling-Ribeiro, M. et al. Biocontrol of Shigella flexneri in Ground Beef and Vibrio cholerae in Seafood with Bacteriophage-Assisted High Hydrostatic Pressure (HHP) Treatment. Food Bioprocess Technol 8, 1160–1167 (2015). https://doi.org/10.1007/s11947-015-1471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1471-6

Keywords

Navigation