Skip to main content

Advertisement

Log in

High Pressure Processing of Meat, Meat Products and Seafood

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High pressure processing (HPP) allows the decontamination of foods with minimal impact on their nutritional and sensory features. The use of HPP to reduce microbial loads has shown great potential in the meat, poultry and seafood industry. HPP has proven to be a promising technology, and industrial HPP applications have grown rapidly, especially in the stabilization of ready-to-eat meats and cured products, satisfying the demands of regulatory agencies such as the United States Department of Agriculture-Food Safety and Inspection Services (USDA-FSIS). HPP has been investigated for a wide range of operations including non-thermal decontamination of acid foods, combined pressure–heating treatments to inactivate pathogenic bacteria, pressure-supported freezing and -thawing, texturization and the removal of meat from shellfish and crustaceans. Research has also been conducted on the impact of the technology on quality features. Processing-dependent changes in muscle foods include changes in colour, texture and water-holding capacity, with endogenous enzymes playing a major role in the phenomena. This review summarizes the current approaches to the use of high hydrostatic pressure processing, focusing mainly on meat, meat products and seafood. Recent findings on the microbiological, chemical and molecular aspects of HPP technology, along with commercial and research applications, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdul Ghani AG, Farid MM (2007) Numerical simulation of solid-liquid food mixture in a high pressure processing unit using computational fluid dynamics. J Food Eng 80:1031–1042

    Article  Google Scholar 

  2. Aktar S, Paredes-Sabja D, Torres JA, Sarker MR (2009) Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol 26:272–277

    Article  CAS  Google Scholar 

  3. Acton JC, Dick RL (1984) Protein-protein interaction in processed meats. Recip Meat Conf Proc 37:36–42

    Google Scholar 

  4. Amanatidou A, Schlüter O, Lemkau K, Gorris LGM, Smid EJ, Knorr D (2000) Effect of combined high pressure treatment and modified atmospheres on the shelf-life of fresh Atlantic salmon. Innov Food Sci Emerg Technol 1:87–98

    Article  CAS  Google Scholar 

  5. Andres AI, Adamsen CE, Møller JKS, Skibsted LH (2004) High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and colour. Eur Food Res Technol 219:205–210

    Article  CAS  Google Scholar 

  6. Andres AI, Adamsen CE, Møller JKS, Ruiz J, Skibsted LH (2006) High pressure treatment of dry-cured Iberian ham. Effect on colour and oxidative stability during chill storage packed in modified atmosphere. Eur Food Res Technol 222:486–491

    Article  CAS  Google Scholar 

  7. Archer DL (1996) Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends Food Sci Technol 7:91–95

    Article  CAS  Google Scholar 

  8. Ashie INA, Simpson BK (1996) Application of high hydrostatic pressure to control enzyme related seafood texture deterioration. Food Res Int 29:5–6

    Article  Google Scholar 

  9. Ashie IN, Lanier TC (1999) High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase. J Food Sci 64:704–708

    Article  CAS  Google Scholar 

  10. Aymerich T, Picouet PA, Monfort JM (2008) Decontamination technologies for meat products. Meat Sci 78:114–129

    Article  Google Scholar 

  11. Aymerich MT, Jofré A, Garriga M, Hugas M (2005) Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J Food Prot 68:173–177

    Google Scholar 

  12. Balasubramaniam VM, Farkas D (2008) High pressure processing. Food Sci Technol Int 14:413–418

    Article  Google Scholar 

  13. Barbosa-Canovas GV, Juliano P (2008) Food sterilization by combining high pressure and thermal energy. In: Food engineering: integrated approaches. Springer, New York, pp 9–46

  14. Bouton PE, Ford AL, Harris PV, Macfarlane JJ, O’Shea JM (1977) Pressure-heat treatment of post rigor muscle: effects on tenderness. J Food Sci 42:132–135

    Article  Google Scholar 

  15. Brown P, Meyer R, Cardone F, Pocchiari M (2003) Ultra-high-pressure inactivation of prion infectivity in processed meat: a practical method to prevent human infection. Proc Natl Acad Sci U S A 100:6093–6097

    Article  CAS  Google Scholar 

  16. Butz P, Tauscher B (2002) Emerging technologies: chemical aspects. Food Res Int 35:279–284

    Article  CAS  Google Scholar 

  17. Buzrul S, Alpas H, Largeteau A, Bozoglu F, Demazeau G (2008) Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. J Food Eng 85:466–472

    Article  CAS  Google Scholar 

  18. Calkins CR, Seidman SC (1988) Relationship among calcium-dependent protease, cathepsin B and H, meat tenderness and the response of muscle to aging. J Anim Sci 66:1186–1193

    CAS  Google Scholar 

  19. Campus M, Addis MF, Cappuccinelli R, Porcu MC, Pretti L, Tedde V, Secchi N, Stara G, Roggio T (2010) Stress relaxation behaviour and structural changes of muscle tissues from Gilthead Sea Bream (Sparus aurata L.) following high pressure treatment. J Food Eng 96:192–198

    Article  CAS  Google Scholar 

  20. Campus M, Flores M, Martinez A, Toldrà F (2008) Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Sci 80:1174–1181

    Article  CAS  Google Scholar 

  21. Cardone F, Brown P, Meyer R, Pocchiari M (2006) Inactivation of transmissible spongiform encephalopathy agents in food products by ultra high pressure–temperature treatment. Biochim Biophys Acta 1764:558–562

    CAS  Google Scholar 

  22. Carlez A, Rosec JP, Richard N, Cheftel JC (1993) High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. Lebenson Wiss Technol 26:357–363

    Article  Google Scholar 

  23. Carlez A, Veciana-Nogues T, Cheftel JC (1995) Changes in colour and myoglobin of minced beef meat due to high pressure processing. Lebenson Wiss Technol 28:528–538

    Article  CAS  Google Scholar 

  24. Cheah PB, Ledward DA (1996) High pressure effects on lipid oxidation in minced pork. Meat Sci 43:123–134

    Article  CAS  Google Scholar 

  25. Cheah PB, Ledward DA (1997) Catalytic mechanism of lipid oxidation following high pressure treatment in pork fat and meat. J Food Sci 62:1135–1139

    Article  CAS  Google Scholar 

  26. Cheftel JC, Culioli J (1997) Effect of high pressure on meat: a review. Meat Sci 46:211–234

    Article  CAS  Google Scholar 

  27. Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:81–100

    Google Scholar 

  28. Chéret R, Aránzazu HA, Delbarre-Ladrat C, de Lambarrie M, Verrez-Bagnis V (2006) Proteins and proteolytic activity changes during refrigerated storage in sea bass (Dicentrarchus labrax L.) muscle after high-pressure treatment. Eur Food Res Technol 222:527–535

    Article  CAS  Google Scholar 

  29. Chevalier D, Le Bail A, Goul M (2001) Effect of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Res Int 34:425–429

    Article  CAS  Google Scholar 

  30. Cook DW (2003) Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high hydrostatic pressure processing. J Food Prot 66:2277–2282

    Google Scholar 

  31. Crawford YJ, Murano EA, Olson DG, Shenoy K (1996) Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast. J Food Prot 59:711–715

    Google Scholar 

  32. Davis KJ, Sebranek JG, Huff-Lonergan E, Lonergan SM (2004) The effects of aging on moisture-enhanced pork loins. Meat Sci 66:519–524

    Article  CAS  Google Scholar 

  33. Defaye A, Ledward DA, MacDougall DA, Tester RF (1995) Renaturation of metmyoglobin subjected to high isostatic pressure. Food Chem 52:19–22

    Article  CAS  Google Scholar 

  34. Delgado AHC (2003) Pressure treatment of food: instantaneous but not homogeneous effect. Adv High Press Biosci Biotechnol II:459–464

    Google Scholar 

  35. Delgado A, Rauh C, Kowalczyk W, Baars A (2008) Review of modelling and simulation of high pressure treatment of materials of biological origin. Trends Food Sci Technol 19:329–336

    Article  CAS  Google Scholar 

  36. Denys S, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000) Modeling conductive heat transfer and process uniformity during batch high-pressure processing of foods. Biotechnol Prog 16:92–101

    Article  CAS  Google Scholar 

  37. Elgasim EA, Kennick WH (1980) Effect of pressurization of pre-rigor beef muscles on protein quality. J Food Sci 45:1122–1124

    Article  Google Scholar 

  38. Farkas D, Hoover D (2000) High pressure processing: kinetics of microbial inactivation for alternative food processing technologies. J Food Sci (Supplement): 47–64

  39. Fernández-García A, Heindl P, Voigt H, Bütter M, Wienhold D, Butz P, Starke J, Tauscher B, Pfaff E (2004) Reduced proteinase K resistance and infectivity of prions after pressure treatment at 60 °C. J Gen Virol 85:261–264

    Article  CAS  Google Scholar 

  40. Funtenberger S, Dumay E, Cheftel JC (1997) High pressure promotes β-lactoglobulin aggregation through SH/S−S interchange reactions. J Agric Food Chem 45:912–921

    Article  CAS  Google Scholar 

  41. Furukawa S, Nakahara A, Hayakawa I (2000) Effect of reciprocal pressurization on germination and killing of bacterial spores. Int J Food Sci Technol 35:529–532

    Article  CAS  Google Scholar 

  42. García-Graells C, Masschalck B, Michiels C (1999) Inactivation of Escherichia coli in milk by high hydrostatic pressure treatment in combination with antimicrobial peptides. J Food Prot 62:1248–1254

    Google Scholar 

  43. Garriga M, Aymerich MT, Costa S, Monfort JM, Hugas M (2002) Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiol 19:509–518

    Article  CAS  Google Scholar 

  44. Garriga M, Aymerich MT, Hugas M (2002) Effect of high pressure processing on the microbiology of skin-vacuum packaged sliced meat products: cooked pork ham, dry cured pork ham and marinated beef loin. Profit Final Project Report FIT060000200066

  45. Garriga M, Grèbol N, Aymerich MT, Monforta JM, Hugas M (2004) Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov Food Sci Emerg Technol 5:451–457

    Article  Google Scholar 

  46. Gòmez-Estaca J, Gòmez-Guillén MC, Montero P (2007) High pressure effects on the quality and preservation of cold-smoked dolphinfish (Coryphaena hippurus) fillets. Food Chem 102:1250–1259

    Article  CAS  Google Scholar 

  47. Gola S, Mutti P, Manganelli E, Squarcina N, Rovere P (2000) Behaviour of E. coli O157:H7 strains in model system and in raw meat by HPP: microbial and technological aspects. High Press Res 19:481–487

    Google Scholar 

  48. Grauwet T, Van der Plancken I, Vervoort L, Hendrickx M, Van Loey A (2009) Investigating the potential of Bacillus subtilis α-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes. Biotechnol Prog 4:1184–1193

    Article  Google Scholar 

  49. Grauwet T, Van der Plancken I, Vervoort L, Hendrickx M, Van Loey A (2010) Solvent engineering as a tool in enzymatic indicator development for mild high pressure pasteurization processing. J Food Eng 97:301–310

    Article  CAS  Google Scholar 

  50. Gross M, Jaenicke R (1994) Proteins under pressure: influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630

    Article  CAS  Google Scholar 

  51. Hamm R (1981) Post-mortem changes in muscle affecting the quality of comminuted meat products. In: Lawrie R (ed) Development in meat science. Elsevier Applied Science, London, pp 93–124

    Google Scholar 

  52. Hartmann C, Delgado A (2002) Numerical simulation of convective and diffusive transport effects on a high pressure induced inactivation process. Biotechnol Bioeng 79:94–104

    Article  CAS  Google Scholar 

  53. Hartmann C, Delgado A (2004) Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. J Biomech 37:977–987

    Article  Google Scholar 

  54. Hartmann C, Schuhholz JP, Kitsubun P, Chapleau N, Le Bail A, Delgado A (2004) Experimental and numerical analysis of the thermofluidynamics in a high-pressure autoclave. Innov Food Sci Emerg Technol 5:399–411

    Article  Google Scholar 

  55. Hartmann C, Mathmann K, Delgado A (2006) Mechanical stresses in cellular structures under high hydrostatic pressure. Innov Food Sci Emerg Technol 7:1–12

    Article  Google Scholar 

  56. Hauben K, Wuytack E, Soontjens C, Michiels C (1996) High pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer-membrane permeability. J Food Prot 59:350–355

    CAS  Google Scholar 

  57. He H, Adams RM, Farkas DF, Morrissey MT (2002) Use of high-pressure processing for oyster shucking and shelf-life extension. J Food Sci 67:640–645

    Article  CAS  Google Scholar 

  58. Heindl P, Fernandez Garcia A, Butz P, Trierweiler B, Voigt H, Pfaff E, Tauscher B (2008) High pressure/temperature treatments to inactivate highly infectious prion subpopulations. Innov Food Sci Emerg Technol 9:290–297

    Article  CAS  Google Scholar 

  59. Heinz V, Knorr D (2002) Effect of high pressure on spores. In: Hendrickx MEG, Knorr D (eds) Ultra high pressure treatment of foods. Academic/Plenum Publishers, New York, pp 77–114

    Google Scholar 

  60. Heremans K (1982) High pressure effects on proteins and other biomolecules. Ann Rev Biophys Bioeng 11:1–21

    Article  CAS  Google Scholar 

  61. Heremans K (2002) The effects of pressure on biomaterials. In: Hendrickx MEG, Knorr D (eds) Ultra high pressure treatment of foods. Academic/Plenum Publishers, New York, pp 23–51

    Google Scholar 

  62. Hite BH (1899) The effects of pressure in the preservation of milk. Bull West Virginia Univ Agric Exp Stn 58:15–35

    Google Scholar 

  63. Homma N, Ikeuchi Y, Suzuki A (1994) Effects of high pressure treatment on the proteolytic enzymes in meat. Meat Sci 38:219–228

    Article  CAS  Google Scholar 

  64. Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43:99–107

    Google Scholar 

  65. Hopkins DL (2000) The relationship between actomyosin, proteolysis and tenderisation examined using protease inhibitors. PhD thesis, University of New England, Australia

  66. Huff-Lonergan E, Mitsuhashi T, Beekman DD, Parrish FC, Olson DG, Robson RM (1996) Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J Anim Sci 74:993–1008

    CAS  Google Scholar 

  67. Hugas M, Garriga M, Monfort JM (2002) New mild technologies in meat processing: high pressure as a model technology. Meat Sci 62:359–371

    Article  Google Scholar 

  68. Hurtado JL, Montero P, Borderìas J (2000) Extension of shelf life of chilled hake (Merluccius capaensis) by high pressure. Food Sci Technol Int 6:243–249

    Article  Google Scholar 

  69. Jiménez-Colmenero F, Borderias AJ (2003) High-pressure processing of myosystems. Uncertainties in methodology and their consequences for evaluation of results. Eur Food Res Technol 217:461–465

    Article  CAS  Google Scholar 

  70. Jiménez Colmenero F (2002) Muscle protein gelation by combined use of high pressure/temperature. Trends Food Sci Technol 13:22–30

    Article  Google Scholar 

  71. Johnson MH, Calkins CR, Huffman RD, Johnson DD, Hargrove DD (1990) Differences in cathepsin B+L and calcium-dependent protease activities among breed types and their relationship to beef tenderness. J Anim Sci 68:2371–2379

    CAS  Google Scholar 

  72. Ju XR, Gao YL, Yao ML, Qian Y (2008) Response of Bacillus cereus spores to high hydrostatic pressure and moderate heat. LWT Food Sci Technol 41:2104–2112

    Article  CAS  Google Scholar 

  73. Juliano P, Knoerzer K, Fryer PJ, Versteeg C (2009) C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process. Biotechnol Prog 25:163–175

    Article  CAS  Google Scholar 

  74. Jung S, Ghoul M, de Lamballerie-Anton M (2003) Influence of high pressure on the color and microbial quality of beef meat. Lebenson Wiss Technol 36:625–631

    Article  CAS  Google Scholar 

  75. Jung S, Anton ML, Taylor RG, Ghoul M (2000) High-pressure effects on lysosome integrity and lysosomal enzyme activity in bovine muscle. J Agric Food Chem 48:2467–2471

    Article  CAS  Google Scholar 

  76. Kalchayanand N, Sikes T, Dunne CP, Ray B (1994) Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl Environ Microbiol 60:4174–4177

    CAS  Google Scholar 

  77. Kalchayanand N, Dunne CP, Ray B (1998) Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J Food Prot 61:425–431

    CAS  Google Scholar 

  78. Kalchayanand N, Dunne CP, Sikes A, Ray B (2004) Germination induction and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innov Food Sci Emerg Technol 5:277–283

    Article  CAS  Google Scholar 

  79. Kalichevsky MT, Knorr D, Lilliford PJ (1995) Potential food applications of high-pressure effects on ice-water transitions. Trends Food Sci Technol 6:253–259

    Article  CAS  Google Scholar 

  80. Kato M, Hayashi R, Tsuda T, Taniguchi K (2002) High pressure-induced changes of biological membrane. Study on the membrane-bound Na+/K+-ATPase as a model system. Eur J Biochem 269:110–118

    Article  CAS  Google Scholar 

  81. Kemp CM, Sensky PL, Bardsley RG, Buttery PJ, Parr T (2010) Tenderness—an enzymatic view. Meat Sci 84:248–256

    Article  CAS  Google Scholar 

  82. Kingsley DH, Hoover DJ, Papafragkou E, Richards GP (2002) Inactivation of hepatitis A virus and calicivirus by high hydrostatic pressure. J Food Prot 65:1605–1609

    Google Scholar 

  83. Knoerzer K, Buckow R, Sanguansri P, Versteeg C (2010) Adiabatic compression heating coefficients for high-pressure processing of water, propylene-glycol and mixtures—a combined experimental and numerical approach. J Food Eng 96:229–238

    Article  CAS  Google Scholar 

  84. Knorr D, Schlueter O, Heinz V (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol 52:42–45

    Google Scholar 

  85. Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74:34–43

    Article  CAS  Google Scholar 

  86. Kristensen L, Purslow PP (2001) The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. Meat Sci 58:17–23

    Article  CAS  Google Scholar 

  87. Kural AG, Chen HQ (2008) Conditions for a 5-log reduction of Vibrio vulnificus in oysters through high hydrostatic pressure treatment. Int J Food Microbiol 122:180–187

    Article  CAS  Google Scholar 

  88. Kural AG, Shearer AEH, Kingsley DH, Chen H (2008) Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. Int J Food Microbiol 127:1–5

    Article  Google Scholar 

  89. Khurana M, Karwe MV (2009) Numerical prediction of temperature distribution and measurement of temperature in a high hydrostatic pressure food processor. Food Bioprocess Technol 2:279–290

    Article  Google Scholar 

  90. Kurth LB (1986) Effect of pressure-heat treatment on cathepsin B1 activity. J Food Sci 51:663–664

    Article  CAS  Google Scholar 

  91. Lakshmanan R, Piggott JR, Paterson A (2003) Potential applications of high pressure for improvement in salmon quality. Trends Food Sci Technol 14:354–363

    Article  CAS  Google Scholar 

  92. Lindsay DS, Collins MV, Holliman D, Flick GJ, Dubey JP (2006) Effects of high-pressure processing on Toxoplasma gondii tissue cysts in ground pork. J Parasitol 92:195–196

    Article  Google Scholar 

  93. Linton M, Patterson MF (2000) High pressure processing of foods for microbiological safety and quality. Acta Microbiol Immunol Hung 47:175–182

    Article  CAS  Google Scholar 

  94. Lopez-Caballero ME, Perez-Mateos M, Montero P, Borderias AJ (2000) Oyster preservation by high-pressure treatment. J Food Prot 63:196–201

    CAS  Google Scholar 

  95. Low PS, Somero GN (1974) Temperature adaptation of enzymes. A proposed molecular basis for the different catalytic efficiencies of enzymes from ectotherms and endotherms. Comp Biochem Physiol 49:307–312

    Article  CAS  Google Scholar 

  96. Ludwig H, Schreck Ch (1997) The inactivation of vegetative bacteria by pressure. In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, Belgium, pp 221–224

    Google Scholar 

  97. Ludwig H, van Almsick G, Schreck C (2002) The effect of high hydrostatic pressure on the survival of microorganisms. In: Taniguchi Y, Stanley HE, Ludwig H (eds) Biological systems under extreme conditions. Springer, Berlin, pp 239–256

    Google Scholar 

  98. McClane BA (2007) Clostridium perfringens. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 423–444

    Google Scholar 

  99. Macfarlane JJ (1973) Pre-rigor pressurization of muscle: effect on pH, shear value and taset panel assessment. J Food Sci 38:294–298

    Article  CAS  Google Scholar 

  100. Macfarlane JJ (1985) High pressure technology and meat quality. In: Lawrie RA (ed) Developments in meat science, 3rd edn. Elsevier Applied Science, London, pp 155–184

    Google Scholar 

  101. Maggi A, Gola S, Rovere P, Miglioli L, Dall’aglio G, Loenneborg NG (1996) Effects of combined high pressure-temperature treatments on Clostridium sporogenes spores in liquid media. Industria Conserve 71:8–14

    Google Scholar 

  102. Mancini RA, Hunt MC (2005) Current research in meat color. Meat Sci 71:100–121

    Article  CAS  Google Scholar 

  103. Marcos B, Aymerich T, Guardia MD, Garriga M (2007) Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Sci 76:46–53

    Article  CAS  Google Scholar 

  104. Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW (2001) Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme and lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339–344

    Article  CAS  Google Scholar 

  105. McClements JM, Patterson MF, Linton M (2001) The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. J Food Prot 64:514–522

    CAS  Google Scholar 

  106. Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E (2004) Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J Anim Sci 82:1195–1205

    CAS  Google Scholar 

  107. Messens W, Van Camp J, Huyghebaert A (1997) The use of high pressure to modify the functionality of food proteins. Trends Food Sci Technol 8:107–112

    Article  CAS  Google Scholar 

  108. Moeller PW, Field PA, Dutson TR, Landmann WA, Carpenter ZL (1977) High temperature effects on lysosomal enzymes distribution and fragmentation of bovine muscle. J Food Sci 42:510–512

    Article  CAS  Google Scholar 

  109. Morales P, Calzada J, Nuñez M (2006) Effect of high-pressure treatment on the survival of Listeria monocytogenes Scott A in sliced vacuum-packaged Iberian and Serrano cured hams. J Food Prot 69:2539–2543

    Google Scholar 

  110. Murakami T, Kimura I, Yamagishi T, Yamashita M, Sugimoto M, Satake M (1992) Thawing of frozen fish by hydrostatic pressure. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM/J. Libby Eurotext Ltd, London, pp 329–331

    Google Scholar 

  111. Murano EA, Murano PS, Brennan RE, Shenoy K, Moreira RG (1999) Application of high hydrostatic pressure to eliminate Listeria monocytogenes from fresh pork sausage. J Food Prot 62:480–483

    CAS  Google Scholar 

  112. Murchie LW, Cruz-Romero M, Kerry J, Linton J, Patterson M, Smiddy M, Kelly A (2005) High pressure processing of shellfish: a review of microbiological and other quality aspects. Innov Food Sci Emerg Technol 6:257–270

    Article  Google Scholar 

  113. Norton T, Sun DW (2008) Recent advances in the use of high hydrostatic pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1:2–34

    Article  Google Scholar 

  114. Ohmori T, Shigehisa T, Taji S, Hayashi R (1991) Effect of high pressure on the protease activities in meat. Agric Biol Chem 55:357–361

    CAS  Google Scholar 

  115. Okazaki E, Ueda T, Kusaba R, Kamimura S, Fukuda Y, Arai K (1997) Effect of heating on pressure-induced gel of chum salmon meat. In: Heremans K (ed) High pressure research in the bioscience and biotechnology. Leuven University Press, Leuven, Belgium, pp 371–374

    Google Scholar 

  116. Oshima T, Ushio H, Koizumi C (1993) High pressure treatments of fish and fish products. Trends Food Sci Technol 4:370–374

    Article  Google Scholar 

  117. Orlien V, Hansen E, Skibsted LH (2000) Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. Eur Food Res Technol 211:99–104

    Article  CAS  Google Scholar 

  118. Otero L, Ramos AM, de Elvira C, Sanz PD (2007) A model to design high-pressure processes towards an uniform temperature distribution. J Food Eng 78:1463–1470

    Article  Google Scholar 

  119. Paredes-Sabja D, Gonzales M, Sarker MR, Torres JA (2007) Combined effects of hydrostatic pressure, temperature and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. J Food Sci 72:202–207

    Article  CAS  Google Scholar 

  120. Park SW, Sohn KY, Shin JH, Lee HJ (2001) High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. Int J Food Sci Technol 36:775–781

    Article  CAS  Google Scholar 

  121. Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic-pressure treatment in phosphate-buffered saline and foods. J Food Prot 58:524–529

    Google Scholar 

  122. Patterson MF, Kilpatrick DJ (1998) The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J Food Prot 61:432–436

    CAS  Google Scholar 

  123. Raghubeer EV (2007) High hydrostatic pressure processing of seafood. Technical note “Seafood white paper”. http://www.avure.com/archive/documents/Food-products/seafood-white-paper.pdf

  124. Rauh C, Baars A, Delgado A (2009) Uniformity of enzyme inactivation in a short-time high-pressure process. J Food Eng 91:154–163

    Article  CAS  Google Scholar 

  125. Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high pressure processing. J Food Sci 68:254–259

    Article  CAS  Google Scholar 

  126. Ritz M, Tholozan JL, Federighi M, Pilet MF (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67:2240–2247

    Article  CAS  Google Scholar 

  127. Rouillé J, Lebail A, Ramaswamy HS, Leclerc L (2002) High pressure thawing of fish and shellfish. J Food Eng 53:83–88

    Article  Google Scholar 

  128. Rubio B, Martínez B, García-Gachán MD, Rovira J, Jaime I (2007) Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”. Innov Food Sci Emerg Technol 8:102–110

    Article  Google Scholar 

  129. Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto JJ, Tsuchiya T (1994) Carp natural actomyosin: thermal denaturation mechanism. J Food Sci 59:1002–1008

    Article  CAS  Google Scholar 

  130. Sáiz AH, Mingo ST, Balda FP, Samson CT (2008) Advances in design for successful commercial high pressure food processing. Food Aust 60:154–156

    Google Scholar 

  131. Schubring R, Meyer C, Schlüter O, Boguslawski S, Knorr D (2003) Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innov Food Sci Emerg Technol 4:257–267

    Article  Google Scholar 

  132. Schreck C, Layh-Schmidt G, Ludwig H (1999) Inactivation of Mycoplasma pneumoniae by high hydrostatic pressure. Pharm Ind 61(8):759–762

    Google Scholar 

  133. Sentandreu MA, Coulis G, Ouali A (2002) Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci Technol 13:398–419

    Article  CAS  Google Scholar 

  134. Serra X, Sarraga C, Grebol N, Guardia MD, Guerrero L, Gou P, Masoliver P, Gassiot M, Monfort JM, Arnau J (2007) High pressure applied to frozen ham at different process stages 1. Effect on the final physicochemical parameters and on the antioxidant and proteolytic enzyme activities of dry-cured ham. Meat Sci 75:12–20

    Article  CAS  Google Scholar 

  135. Serra X, Grebol N, Guardia MD, Guerrero L, Gou P, Masoliver P, Gassiot M, Sarraga C, Monfort JM, Arnau J (2007) High pressure applied to frozen ham at different process stages 2. Effect on the sensory attributes and on the color characteristics of dry-cured ham. Meat Sci 75:21–28

    Article  Google Scholar 

  136. Shigehisa T, Ohmori T, Saito A, Taji S, Hayashi R (1991) Effects of high pressure on the characteristics of pork slurries and the inactivation of micro-organisms associated with meat and meat products. Int J Food Microbiol 12:207–216

    Article  CAS  Google Scholar 

  137. Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate-buffered saline and model food systems. J Appl Microbiol 83:181–188

    Article  CAS  Google Scholar 

  138. Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    Article  CAS  Google Scholar 

  139. Stewart C, Dunne C, Sikes A, Hoover D (2000) Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innov Food Sci Emerg Technol 1:49–56

    Article  CAS  Google Scholar 

  140. Suzuki A, Watanabe M, Ikeuchi Y, Saito M, Takahashi K (1993) Effects of high pressure treatment on the ultrastructure and thermal behaviour of beef intramuscular collagen. Meat Sci 35:17–25

    Article  CAS  Google Scholar 

  141. Tanaka M, Xueyi Z, Nagashima Y, Taguchi T (1991) Effect of high pressure on lipid oxidation in sardine meat. Nippon Suisan Gakkaishi 57:957–963

    CAS  Google Scholar 

  142. Tanzi E, Saccani G, Barbuti S, Grisenti MS, Lori D, Bolzoni S, Parolari G (2004) High pressure treatment of raw ham. Sanitation and impact on quality. Industria Conserve 79:37–50

    Google Scholar 

  143. Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE (1995) Is Z-disk degradation responsible for postmortem tenderization? J Anim Sci 73:1351–1367

    CAS  Google Scholar 

  144. Téllez SJ, Ramírez JA, Pérez C, Vázquez M, Simal J (2001) Aplicación de la alta pressión hidrostática en la conservación de los alimentos. Cienc Tec Alimentaria 3:66–80

    Google Scholar 

  145. Tewari G, Jayas DS, Holley RA (1999) High pressure processing of foods: an overview. Sci Aliments 19:619–661

    Google Scholar 

  146. Toldrà F, Flores M (1998) The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. CRC Crit Rev Nutr Food Sci 38:331–352

    Article  Google Scholar 

  147. Tuboly E, Lebovics VK, Gaál O, Mészáros L, Farkas J (2003) Microbiological and lipid oxidation studies on mechanically deboned turkey meat treated by high hydrostatic pressure. J Food Eng 56:241–244

    Article  Google Scholar 

  148. Van der Plancken I, Grauwet T, Oey I, Van Loey A, Hendrickx M (2008) Impact evaluation of high pressure treatment on foods: considerations on the development of pressure-temperature-time integrators (pTTIs). Trends Food Sci Technol 19:337–348

    Article  CAS  Google Scholar 

  149. Wada S (1992) Quality and lipid change of sardine meat by high pressure treatment. In: Balny C, Hayashi R, Heremans K, Masson P (ed) High pressure and biotechnology. Colloque INSERM/John Libbey Eurotext Ltd, Montrouge, France, 235–238

  150. Wilson DR, Lukasz D, Stringer S, Moezelaar R, Brocklehurst TF (2008) High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends Food Sci Technol 19:289–299

    Article  CAS  Google Scholar 

  151. Wuytack EY, Boven S, Michelis CW (1998) Comparative study of pressure induced germination of Bacillus subtilis spores at low and high pressure. Appl Environ Microbiol 64:3220–3224

    CAS  Google Scholar 

  152. Zhu S, Naim F, Marcotte M, Ramaswamy H, Shao Y (2008) High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. Int J Food Microbiol 126:86–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Campus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campus, M. High Pressure Processing of Meat, Meat Products and Seafood. Food Eng. Rev. 2, 256–273 (2010). https://doi.org/10.1007/s12393-010-9028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-010-9028-y

Keywords

Navigation