Skip to main content

Advertisement

Log in

Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Polymer films based on ethylene vinyl copolymers (EVOH) containing a 29 % (EVOH 29) and a 44 % molar percentage of ethylene (EVOH 44), and incorporating ε-polylysine (EPL) at 0 %, 1 %, 5 % and 10 % were successfully made by casting. The optical properties and the amount of EPL released from the films to phosphate buffer at pH 7.5 were evaluated, films showing great transparency and those of EVOH 29 copolymer releasing a greater amount of EPL. The antimicrobial properties of the resulting films were tested in vitro against different foodborne microorganisms and in vivo in surimi sticks. With regard to the antimicrobial capacity tested in vitro in liquid medium at 37 °C and 4 °C against Listeria monocytogenes and Escherichia coli over a period of 72 h, films showed a considerable growth inhibitory effect against both pathogens, more notably against L. monocytogenes, and being EVOH 29 more effective than EVOH 44 films. At 37 °C, total growth inhibition was observed for EVOH 29 films incorporating 10 % EPL against both microorganisms whereas the copolymer EVOH 44 did show total inhibition against L. monocytogenes and the growth of E. coli was reduced by 6.64 log units. At 4 °C, no film was able to inhibit completely bacterial growth. Scanning electron microscopy micrographs showed corrugated cell surfaces with blisters and bubbles, and collapse of the cells appearing shorter and more compact after treatment with EPL. Finally, the films were successfully used to increase the shelf life of surimi sticks. The results show the films developed have a great potential for active food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, M. R., & Moss, M. O. (2008). Food microbiology. UK: The Royal Society of Chemistry Cambridge.

    Google Scholar 

  • Aucejo, S., Catala, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films. Food Science and Technology International, 6(2), 159–164.

    Article  CAS  Google Scholar 

  • Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, 75(9), 557–563.

    Article  Google Scholar 

  • Buchanan, R. L., & Doyle, M. P. (1997). Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E-coli. Food Technology, 51(10), 69–76.

    Google Scholar 

  • Chang, S.-S., Lu, W.-Y. W., Park, S.-H., & Kang, D.-H. (2010). Control of foodborne pathogens on ready-to-eat roast beef slurry by epsilon-polylysine. International Journal of Food Microbiology, 141(3), 236–241.

    Article  CAS  Google Scholar 

  • Chang, Y., McLandsborough, L., & McClements, D. J. (2012). Cationic antimicrobial (epsilon-polylysine)-anionic polysaccharide (Pectin) interactions: influence of polymer charge on physical stability and antimicrobial efficacy. Journal of Agricultural and Food Chemistry, 60(7), 1837–1844.

    Article  CAS  Google Scholar 

  • Chi-Zhang, Y. D., Yam, K. L., & Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90(1), 15–22.

    Article  CAS  Google Scholar 

  • Coton, M., Denis, C., Cadot, P., & Coton, E. (2011). Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiology, 28(2), 252–260.

    Article  CAS  Google Scholar 

  • FAO (2005) Further processing of fish Fisheries and Aquaculture Department, Rome. Updated 27 May 2005 Retrieved 14 March 2011.

  • FDA (2004) Agency reponse letter GRAS Notice No. GRN 00135.

  • Gambarin, P., Magnabosco, C., Losio, M. N., Pavoni, E., Gattuso, A., Arcangeli, G., et al. (2012). Listeria monocytogenes in ready-to-rat seafood and potential hazards for the consumers. International Journal of Microbiology, 2012, 497–635.

  • Geornaras I, Yoon Y., Belk K. E., Smith G. C., Sofos J. N. (2007). Antimicrobial activity of epsilonpolylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. Journal of Food Science, 72(8), M330–4.

  • Gunlu, A., & Koyun, E. (2013). Effects of vacuum packaging and wrapping with chitosan-based edible film on the extension of the shelf life of sea bass (Dicentrarchus labrax) fillets in cold storage (4 A degrees C). Food and Bioprocess Technology, 6(7), 1713–1719.

    Article  Google Scholar 

  • Hiraki, J. (1995). Basic and applied studies on ε-polylysine. Journal of Antibacterial Antifungal Agents Japan, 23, 349–493.

    Google Scholar 

  • Hiraki, J. (2000). ε-Polylysine, its development and utilization. Fine Chemistry, 29, 18–25.

    Google Scholar 

  • Hiraki, J., Ichikawa, T., Ninomiya, S., Seki, H., Uohama, K., Kimura, S., et al. (2003). Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37(2), 328–340.

    Article  CAS  Google Scholar 

  • Ho, Y. T., Ishizaki, S., & Tanaka, M. (2000). Improving emulsifying activity of epsilon-polylysine by conjugation with dextran through the Maillard reaction. Food Chemistry, 68(4), 449–455.

    Article  CAS  Google Scholar 

  • Huss, H. H., Jorgensen, L. V., & Vogel, B. F. (2000). Control options for Listeria monocytogenes in seafoods. International Journal of Food Microbiology, 62(3), 267–274.

    Article  CAS  Google Scholar 

  • Kaneko, K., Hayashidani, H., Ohtomo, Y., Kosuge, J., Kato, M., Takahashi, K., et al. (1999). Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. Journal of Food Protection, 62(6), 644–649.

    CAS  Google Scholar 

  • Kang, E. T., Tan, K. L., Kato, K., Uyama, Y., & Ikada, Y. (1996). Surface modification and functionalization of polytetrafluoroethylene films. Macromolecules, 29(21), 6872–6879.

    Article  CAS  Google Scholar 

  • Li, J., Han, Q., Chen, W., & Ye, L. (2012). Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. Journal of the Science of Food and Agriculture, 92(11), 2358–2365.

    Article  CAS  Google Scholar 

  • Lopez de Dicastillo, C., Nerin, C., Alfaro, P., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2011). Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. Journal of Agricultural and Food Chemistry, 59(14), 7832–7840.

    Article  CAS  Google Scholar 

  • Lopez-de-Dicastillo, C., Alonso, J. M., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) dilms. Journal of Agricultural and Food Chemistry, 58(20), 10958–10964.

    Article  CAS  Google Scholar 

  • Lopez-de-Dicastillo, C., Pezo, D., Nerin, C., Lopez-Carballo, G., Catala, R., Gavara, R., et al. (2012). Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packaging Technology and Science, 25(8), 457–466.

    Article  CAS  Google Scholar 

  • M100-S22 (2012) Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement. Clinical and Laboratory Standards Institute. Advancing Quality in Health Care Testing. Vol. 32 No. 3. Replaces M100-S21 . Vol. 31 No. 1

  • Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157:H7. Lancet, 352(9135), 1207–1212.

    Article  CAS  Google Scholar 

  • Miya, S., Takahashi, H., Ishikawa, T., Fujii, T., & Kimura, B. (2010). Risk of Listeria monocytogenes xontamination of raw ready-to-eat seafood products available at retail outlets in Japan. Applied and Environmental Microbiology, 76(10), 3383–3386.

    Article  CAS  Google Scholar 

  • Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Lara, M., Gavara, R., & Hernandez-Munoz, P. (2012a). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, 157(2), 195–201.

    Article  CAS  Google Scholar 

  • Muriel-Galet, V., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2012b). Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology, 157(2), 239–244.

    Article  CAS  Google Scholar 

  • Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Aucejo, S., Gavara, R., & Hernandez-Munoz, P. (2013a). Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control, 30(1), 137–143.

    Article  CAS  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Hernández-Muñoz, P., & Gavara, R. (2013b). Characterization of ethylene–vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packaging and Shelf Life, 1, 10–17.

    Article  Google Scholar 

  • Park, J. W. (2014). Surimi and surimi seafood. Boca Raton: CRC Press.

    Google Scholar 

  • Shima, S., & Sakai, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41(9), 1807–1809.

    Article  CAS  Google Scholar 

  • Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of epsilon-poly-l-lysine. Journal of Antibiotics, 37(11), 1449–1455.

    Article  CAS  Google Scholar 

  • Singh, R. K., & Balange, A. K. (2005). Characteristics of pink perch (Nemipterus japonicus) surimi at frozen temperature. Journal of Food Processing and Preservation, 29(1), 75–83.

    Article  CAS  Google Scholar 

  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420.

    Article  CAS  Google Scholar 

  • Ting, H. Y., Ishizaki, S., & Tanaka, M. (1999). Epsilon-polylysine improves the quality of surimi products. Journal of Muscle Foods, 10(4), 279–294.

    Article  Google Scholar 

  • Tzschoppe, M., Martin, A., & Beutin, L. (2012). A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. International Journal of Food Microbiology, 152(1–2), 19–30.

    Article  CAS  Google Scholar 

  • Uchida, E., Uyama, Y., & Ikada, Y. (1993). Sorption of low-molecular-weight anions into thin polycation layers grafted onto a film. Langmuir, 9(4), 1121–1124.

    Article  CAS  Google Scholar 

  • Unalan, I. U., Ucar, K. D. A., Arcan, I., Korel, F., & Yemenicioglu, A. (2011). Antimicrobial potential of polylysine in edible films. Food Science and Technology Research, 17(4), 375–380.

    Article  Google Scholar 

  • Venugopal, V., & Shahidi, F. (1995). Value-added products from underutilized fish species. Critical Reviews in Food Science and Nutrition, 35(5), 431–453.

    Article  CAS  Google Scholar 

  • Zambuchini, B., Fiorini, D., Verdenelli, M. C., Orpianesi, C., & Ballini, R. (2008). Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. LWT--Food Science and Technology, 41(9), 1733–1738.

    Article  CAS  Google Scholar 

  • Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, projects AGL2012-39920-C03-01, and fellowship funding for V. M.-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hernández-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muriel-Galet, V., López-Carballo, G., Gavara, R. et al. Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation. Food Bioprocess Technol 7, 3548–3559 (2014). https://doi.org/10.1007/s11947-014-1363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1363-1

Keywords

Navigation