Skip to main content
Log in

Characterization of Microencapsulated Rosemary Essential Oil and Its Antimicrobial Effect on Fresh Dough

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to characterize rosemary essential oil particles obtained by spray-drying and to evaluate their antimicrobial activity. Measurements of mycelial growth of Penicillium and Aspergillus fungi, isolated from fresh dough, were made applying oil concentrations of 1.0, 5.0, 10.0, 20.0, and 50.0 μL/mL. Fungi and yeast counts in the fresh dough submitted to the control (no oil), pure oil, and microencapsulated oil treatments were also conducted. The microcapsules showed 50 % oil retention after drying, and the major oil components identified were 1,8-cineole (29.0 %), camphor (26.6 %), and α-pinene (10.6 %). The analysis of the particles revealed surfaces without fissures, with a mean particle size of 12.2 μm and presenting an amorphous structure. The growth inhibiting effect of Penicillium sp. fungus, compared to the control, was verified at concentrations of 1.0, 5.0, and 10.0 μL/mL rosemary essential oil, which did not differ among them. For Aspergillus sp., the application of 10.0 μL/mL oil provided greater inhibition compared to 1.0 and 5.0 μL/mL. Complete inhibition occurred with the application of 50.0 μL/mL for both fungal genera tested. At 8 days of dough storage at 25 °C, a decrease of at least 0.7 and 1.5 log cycles of fungal growth was observed in the dough with pure oil and that with microencapsulated oil, respectively, relative to the control. The microencapsulation process retained the antimicrobial property of rosemary essential oil and provided further extension of this activity over time when applied to fresh dough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamiec, J. (2009). Moisture sorption characteristics of peppermint oil microencapsulated by spray drying. Drying Technology, 27, 1363–1369.

    Article  CAS  Google Scholar 

  • Ananou, S., Muñoz, A., Martínez-Bueno, M., González-Tello, P., Gálvez, A., Maqueda, M., & Valdivia, E. (2010). Evaluation of an enterocin AS-48 enriched bioactive powder obtained by spray drying. Food Microbiology, 27, 58–63.

    Article  CAS  Google Scholar 

  • AOAC. (2007). Official methods of analysis (17th ed.). Gaithersburg: Association of Official Analytical Chemists.

    Google Scholar 

  • Araujo, R. C. Z., Chalfoun, S. M., Angélico, L. C., Araujo, J. B. S., & Pereira, M. C. (2007). In vitro evaluation of the fungitoxic activity of seasonings on the inhibition of fungi isolated from homemade breads. Ciência e Agrotecnologia, 33, 545–551.

    Article  Google Scholar 

  • Ascheri, D. P. R., Marquez, M. O. M., & Martucci, E. T. (2003). Microencapsulation of orange essential oil: Wall material selection. Ciências e Tecnologia de Alimentos, 23, 1–6.

    Article  CAS  Google Scholar 

  • Borrmann, D., Pierucci, A. P. T. R., Leite, S. G. F., & Leão, M. H. M. R. (2013). Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food and Bioproducts Processing, 91, 23–27.

    Article  CAS  Google Scholar 

  • Botrel, D. A., Borges, S. V., Fernandes, R. V. B., Viana, A. D., Costa, J. M. G., & Marques, G. R. (2012). Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. International Journal of Food Science and Technology, 47, 2289–2296.

    Article  CAS  Google Scholar 

  • Brasil. RDC Nº 12. (2001). Aprova o Regulamento Técnico sobre padrões microbiológicos para alimentos. Brasília: Diário Oficial da União.

  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  • Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111, 135–148.

    Article  Google Scholar 

  • Dimitrellou, D., Kourkoutas, Y., Koutinas, A. A., & Kanellaki, M. (2009). Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production. Food Microbiology, 26, 809–820.

    Article  CAS  Google Scholar 

  • Ding, S., & Yang, J. (2013). The influence of emulsifiers on the rheological properties of wheat flour dough and quality of fried instant noodles. LWT--Food Science and Technology, 53, 61–69.

    Article  CAS  Google Scholar 

  • Diniz, S. P. S. S., Coelho, J. S., Rosa, G. S., Specian, V., Oliveira, R. C., & Oliveira, R. R. (2008). Bioactivity of Mentha arvensis L. essential oil in phytopathogenic fungi control. Revista Brasileira de Plantas Medicinais, 10, 9–11.

    CAS  Google Scholar 

  • Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological examination of foods (4th ed.). Washington, DC: APHA, 677 p.

  • Drusch, S., Serfert, Y., & Schwarz, K. (2006a). Microencapsulation of fish oil with noctenylsuccinate-derivatised starch: Flow properties and oxidative stability. European Journal of Lipid Science and Technology, 108, 501–512.

    Article  CAS  Google Scholar 

  • Drusch, S., Serfert, Y., Heuvel, A. V. D., & Schwarz, K. (2006b). Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Research International, 39, 807–815.

    Article  CAS  Google Scholar 

  • Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents—a review. Phytotherapy Research, 21, 308–323.

    Article  CAS  Google Scholar 

  • Fernandes, R. V. B., Borges, S. V., & Botrel, D. A. (2013a). Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência e Tecnologia de Alimentos, 33, 171–178.

    Article  Google Scholar 

  • Fernandes, R. V. B., Borges, S. V., Botrel, D. A., Silva, E. K., Costa, J. M. G., & Queiroz, F. (2013b). Microencapsulation of rosemary essential oil: Characterization of particles. Drying Technology, 31, 1245–1254.

    Article  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 1107–1121.

    Article  CAS  Google Scholar 

  • Graber, M. F., Correa, J. R. P., Verdugo, G., Del Valle, J. M., & Agosin, E. (2010). Spinning cone column isolation of rosemary essential oil. Food Control, 21, 615–619.

    Article  CAS  Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26, 816–835.

    Article  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. (2007). Encapsulation of nanoparticles of d-limonene by spray drying: Role of emulsifiers and emulsifying techniques. Drying Technology, 25, 1079–1089.

    Google Scholar 

  • Jekle, M., & Becker, T. (2011). Dough microstructure: Novel analysis by quantification using confocal laser scanning microscopy. Food Research International, 44, 984–991.

    Article  Google Scholar 

  • Langrish, T. A. G., & Wang, S. (2009). Crystallization rates for amorphous sucrose and lactose powders from spray drying: A comparison. Drying Technology, 27, 606–614.

    Article  CAS  Google Scholar 

  • Leimann, F. V., Gonçalves, O. H., Machado, R. A. F., & Bolzan, A. (2009). Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology. Materials Science and Engineering C, 29, 430–436.

    Article  CAS  Google Scholar 

  • Lindsey, K., & Standen, J. V. (2004). Growth inhibition of plant pathogenic fungi by extracts of Allium sativum and Tulbaghia violacea. South African Journal of Botany, 70, 671–673.

    Google Scholar 

  • Mahanta, J. J., Chutia, M., & Sarma, T. C. (2007). Study on weed flora and their influence on patchouli (Pogostemon cablin benth.) oil and patchoulol. Journal of Plant Sciences, 2, 96.

    Article  Google Scholar 

  • Masters, K. (1991). Spray drying handbook (5th ed.). London: Longman Scientific & Technical.

    Google Scholar 

  • Mayou, J., & Moberg, L. (1992). Cereal and cereal products. In C. Vanderzant & D. F. Splittstoesser (Eds.), Compendium of methods for the microbiological examination of foods (3rd ed., pp. 995–1006). Washington, DC: American Public Health Association.

    Google Scholar 

  • Nandiyanto, A. B. D., & Okuyama, K. (2011). Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 22, 1–19.

    Article  CAS  Google Scholar 

  • Ojeda-Sana, A. M., Baren, C. M. V., Elechosa, M. A., Juárez, M. A., & Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31, 189–195.

    Article  CAS  Google Scholar 

  • Patel, M. J., Ng, J. H. Y., Hawkins, W. E., Pitts, K. F., & Chakrabarti-Bell, S. (2012). Effects of fungal α-amylase on chemically leavened wheat flour doughs. Journal of Cereal Science, 56, 644–651.

    Article  CAS  Google Scholar 

  • Peleg, M. (2005). Mixtures of food powders and particulates. In C. H. Onwulata (Ed.), Encapsulated and powdered foods (pp. 27–37). Boca-Raton: CRC.

    Chapter  Google Scholar 

  • Pereira, M. C., Vilela, G. R., Costa, L. M. A. S., Silva, F. S., Fernandes, A. F., Fonseca, E. W. N., & Piccoli, R. H. (2006). Inhibition fungi growth through of utilization essential oils of spice. Ciência e Agrotecnologia, 30, 731–738.

    Article  Google Scholar 

  • Porte, A., & Godoy, R. L. O. (2001). Rosemary (Rosmarinus officinalis L.): Essential oil antimicrobial and chemical properties. Boletim do Centro de Pesquisa de Processamento de Alimentos, 19, 193–210.

  • Presti, M. L., Ragusa, S., Trozzi, A., Dugo, P., Visinoti, F., Fazio, A., Dugo, G., & Mondello, L. (2005). A comparison between different techniques for the isolation of rosemary essential oil. Journal of Separation Science, 28, 273–280.

    Article  Google Scholar 

  • Ramos, D. M. B., Silva, C. F., Batista, L. R., & Schwan, R. F. (2010). In vitro inhibition of toxigenic filamentous fungi by Pichia sp. and Debaryomyces sp. isolates from coffee (Coffea arabica) fruits. Acta Scientiarum Agronomy, 32, 397–402.

    Google Scholar 

  • Ribeiro, D. S., Melo, D. B., Guimarães, A. G., & Velozo, E. S. (2012). Evaluation of the rosemary essential oil (Rosmarinus officinalis L.) as modulator of bacterial resistance. Semina: Ciências Agrárias, 33, 687–696.

    CAS  Google Scholar 

  • Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1985). A scanning electron microscopy study of microencapsulation. Journal of Food Science, 50, 139–144.

    Article  Google Scholar 

  • Sikkema, J., De Bont, J. A. M., & Poolman, B. (1995). Mechanism of membrane toxicity of hydrocarbons. Microbiological Reviews, 259, 2201–2222.

    Google Scholar 

  • Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., Botrel, D. A., & Gonçalves, M. P. J. (2007). Active film incorporated with sorbic acid on pastry dough conservation. Food Control, 18, 1063–1067.

    Article  CAS  Google Scholar 

  • Teixeira, M. I., Andrade, L. R., Farina, M., & Rocha-Leão, M. H. M. (2004). Characterization of short chain fatty acid microcapsules produced by spray drying. Materials Science and Engineering: C, 24, 653–658.

    Article  Google Scholar 

  • Wang, Y., Lu, Z., Wu, H., & Lv, F. (2009). Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food Microbiology, 136, 71–74.

    Article  CAS  Google Scholar 

  • Wang, Y.-F., Shao, J.-J., Zhou, C.-H., Zhang, D.-L., Bie, X.-M., Lv, F.-X., Zhang, C., & Lu, Z.-X. (2012a). Food preservation effects of curcumin microcapsules. Food Control, 27, 113–117.

    Article  Google Scholar 

  • Wang, Y.-F., Shao, J.-J., Wang, Z.-L., & Lu, Z.-X. (2012b). Study of allicin microcapsules in β-cyclodextrin and porous starch mixture. Food Research International, 49, 641–647.

    Article  CAS  Google Scholar 

  • Yu, L. (2001). Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Advanced Drug Delivery Reviews, 48, 27–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FAPEMIG (Minas Gerais State Foundation for Research Development, Brazil) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Alvarenga Botrel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodoro, R.A.R., de Barros Fernandes, R.V., Botrel, D.A. et al. Characterization of Microencapsulated Rosemary Essential Oil and Its Antimicrobial Effect on Fresh Dough. Food Bioprocess Technol 7, 2560–2569 (2014). https://doi.org/10.1007/s11947-014-1302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1302-1

Keywords

Navigation