Skip to main content
Log in

Validation of a Difussion Model Using Moisture Profiles Measured by Means of TD-NMR in Apples (Malus domestica)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Time domain nuclear magnetic resonance has been used to obtain experimental moisture profiles of apples during convective drying. The drying curves obtained at temperatures of 50 °C, 60 °C, 70 °C, 80 °C and 90 °C during convective drying have been modelled using a diffusion model, solved by a finite elements method. The parametric identification was carried out by comparing the experimental and simulated drying curves, and the validation of the model was conducted by comparing the experimental and the simulated moisture profiles. The proposed diffusion model including solid shrinkage and temperature influence on the diffusion coefficient allowed an adequate prediction of not only the drying curves (MRE = 5.4 ± 0.8%) but also the moisture profiles (MRE = 11.0 ± 1.7%). These results support the hypotheses admitted to formulate the mathematical equations of the model and demonstrate the usefulness of this methodology to validate the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A r :

Rectangular face area (m2; Eq. 2)

A s :

Square face area (m2; Eq. 1)

a w :

Water activity (Eq. 8)

C 0 :

Entropic accommodation factor (Eq. 9) dimensionless

C g :

Guggenheim constant (Eq. 8)

D 0 :

Pre-exponential factor (m2/s; Eq. 4)

D e :

Effective diffusion coefficient (m2/s; Eq. 3)

e 1 :

Short thickness (m; Eq. 1)

e 2 :

Long thickness (m; Eq. 2)

e 02 :

Initial long thickness (m; Eq. 7)

E a :

Activation energy (J/mol; Eq. 4)

ΔH 1 :

Difference between the heats of sorption of the monolayer and the multilayer of water (J/mol; Eq. 9)

ΔH 2 :

Difference between the vaporisation heat of water and the sorption heat of the multilayer of water (J/mol; Eq. 10)

K 0 :

Entropic accommodation factor (Eq.10)

K g :

Constant in the GAB model (Eq. 8)

L :

Half length of the parallelepiped (m)

MRE :

Mean relative error (%)

M :

Moisture content (kg water/kg wm)

N :

Number of samples (Eq. 6)

R :

Universal gas constant (J/mol K; Eq. 4)

RH :

Relative humidity (%)

RMSE :

Root mean square error

r 2 :

Correlation coefficient

SE :

Standard error

S y :

Standard deviation (sample; Eq. 5)

S yx :

Standard deviation (estimation; Eq. 5)

T :

Temperature (°C)

t :

Time (s)

V c :

Calculated value (Eq. 6)

V e :

Experimental value (Eq. 6)

var :

Explained variance (%)

W :

Average moisture content (kg water/kg dm)

W e :

Equilibrium moisture content (kg water/kg dm)

W m :

Monolayer moisture content (kg water/kg dm; Eq. 8)

W l :

Local moisture content (kg water/kg dm) (Eq. 3)

x :

Distance (m)

δ :

Nominal length dimensionless

References

  • AOAC International. (1990). Official methods of analysis of the Association of Official Analytical Chemists International. Arginton, USA: William Horwithz.

    Google Scholar 

  • Assifaoui, A., Champion, D., Chiotelli, E., & Verel, A. (2006). Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydrate Polymers, 64(2), 197–204.

    Article  CAS  Google Scholar 

  • Baini, R., & Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 79(1), 330–343.

    Article  Google Scholar 

  • Bon, J., & Kudra, T. (2007). Enthalpy-driven optimization of intermittent drying. Drying Technology: An International Journal, 25(4), 523.

    Article  Google Scholar 

  • Budiman, E., Stroshine, R., & Cornillon, P. (2002). Moisture measurement in cheese analogue using stretched and multi-exponential models of the magnetic resonance. The Journal of Dairy Research, 69, 619–632.

    Article  CAS  Google Scholar 

  • De Temmerman, J., Verboven, P., Delcour, J. A., Nicolaï, B., & Ramon, H. (2008). Drying model for cylindrical pasta shapes using desorption isotherms. Journal of Food Engineering, 86(3), 414–421.

    Article  Google Scholar 

  • Di Scala, K., & Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT- Food Science and Technology, 41(5), 789–795.

    Article  Google Scholar 

  • Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of amelie mango (Mangifera indica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineering, 88(4), 429–437.

    Article  Google Scholar 

  • Frías, J. M., Foucat, L., Bimbenet, J. J., & Bonazzi, C. (2002). Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chemical Engineering Journal, 86(1–2), 173–178.

    Article  Google Scholar 

  • Hinrichs, R., Götz, J., Noll, M., Wolfschoon, A., Eibel, H., & Weisser, H. (2004). Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Research International, 37(7), 667–676.

    Article  Google Scholar 

  • Kaya, A., Aydın, O., & Demirtaş, C. (2007). Drying kinetics of red delicious apple. Biosystems Engineering, 96(4), 517–524.

    Article  Google Scholar 

  • Kaymak-Ertekin, F., & Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensmittel-Wissenschaft Und-Technologie, 37(4), 429–438.

    Article  CAS  Google Scholar 

  • Márquez, & De Michelis, A. (2011). Comparison of drying kinetics for small fruits with and without particle shrinkage considerations. Food and Bioprocess Technology, 4(7), 1212–1218.

    Article  Google Scholar 

  • Moreira, R., Figueredo, A., & Mulet, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology, 18(1&2), 279–294.

    Article  Google Scholar 

  • Nguyen, T., Dresselaers, T., Verboven, P., D'hallewin, G., Culeddu, N., Van Hecke, P., et al. (2006). Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. Journal of the Science of Food and Agriculture, 86(5), 745–756.

    Article  CAS  Google Scholar 

  • Rudi, T., Guthausen, G., Burk, W., Reh, C. T., & Isengard, H. (2008). Simultaneous determination of fat and water content in caramel using time domain NMR. Food Chemistry, 106(4), 1375–1378.

    Article  CAS  Google Scholar 

  • Rutledge, D. N. (2001). Characterisation of water in agro-food products by time domain-NMR. Food Control, 12(7), 437–445.

    Article  CAS  Google Scholar 

  • Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58(3), 277–283.

    Article  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323–328.

    Article  Google Scholar 

  • Simal, S., Garau, M. C., Femenia, A., & Rosselló, C. (2006). A diffusional model with a moisture-dependent diffusion coefficient. Drying Technology, 24(11), 1365–1372.

    Article  CAS  Google Scholar 

  • Simal, S., Femenia, A., Castell-Palou, Á., & Rosselló, C. (2007). Water desorption thermodynamic properties of pineapple. Journal of Food Engineering, 80(4), 1293–1301.

    Article  Google Scholar 

  • Sørland, G. H., Larsen, P. M., Lundby, F., Rudi, A., & Guiheneuf, T. (2004). Determination of total fat and moisture content in meat using low field NMR. Meat Science, 66(3), 543–550.

    Article  Google Scholar 

  • Sosa, N., Salvatori, D., & Schebor, C. (2010). Physico-chemical and mechanical properties of apple disks subjected to osmotic dehydration and different drying methods. Food and Bioprocess Technology. doi:10.1007/s11947-010-0468-4.

  • Souraki, B. A., & Mowla, D. (2008). Axial and radial moisture diffusivity in cylindrical fresh green beans in a fluidized bed dryer with energy carrier: modeling with and without shrinkage. Journal of Food Engineering, 88(1), 9–19.

    Article  Google Scholar 

  • Srikiatden, J., & Roberts, J. S. (2005). Moisture loss kinetics of apple during convective hot air and isothermal drying. International Journal of Food Properties, 8(3), 493.

    Article  Google Scholar 

  • Todt, H., Guthausen, G., Burk, W., Schmalbein, D., & Kamlowski, A. (2006). Water/moisture and fat analysis by time-domain NMR. Food Chemistry, 96(3), 436–440.

    Article  CAS  Google Scholar 

  • Váquiro, H. A., Clemente, G., García-Pérez, J. V., Mulet, A., & Bon, J. (2009). Enthalpy-driven optimization of intermittent drying of Mangifera indica L. Chemical Engineering Research and Design, 87(7), 885–898.

    Article  Google Scholar 

  • Wählby, U., & Skjöldebrand, C. (2001). NIR-measurements of moisture changes in foods. Journal of Food Engineering, 47(4), 303–312.

    Article  Google Scholar 

  • Xing, H., Takhar, P. S., Helms, G., & He, B. (2007). NMR imaging of continuous and intermittent drying of pasta. Journal of Food Engineering, 78(1), 61–68.

    Article  Google Scholar 

  • Yavari, A., Heshmati, A., Hamedi, M., & Haghbin, S. (2011). VIS/NIR hyper-spectroscopy technique for the measurement of moisture and fat contents of breaded-fried chicken nuggets. Food Chemistry, 127(2), 645–650.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the MICINN (DPI2009-14549-C04-02) and the Research Fellowship of the Conselleria d'Innovació, Interior i Justícia (Govern de les Illes Balears).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Simal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, Ó., Eim, V.S., Simal, S. et al. Validation of a Difussion Model Using Moisture Profiles Measured by Means of TD-NMR in Apples (Malus domestica). Food Bioprocess Technol 6, 542–552 (2013). https://doi.org/10.1007/s11947-011-0711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0711-7

Keywords

Navigation