Skip to main content
Log in

Comparison of Drying Kinetics for Small Fruits with and without Particle Shrinkage Considerations

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Experimental values of volume and area changes for sweet (Prunus avium) and sour (Prunus cerasus) cherry and rose hips (Rosa rubiginosa) measured in previous works were analyzed to propose generalized correlations for the three fruits which predicted with low errors. The correlation developed is lineal and the highest errors were observed for fruit water contents corresponding to storage stability values. The shape factors were measured for the fruits, which were close to spherical values as the fruits dried. This would enable the assumption of spherical shape to calculate characteristic dimensions used in modeling. Moreover, the predictions of kinetic models were compared with experimental data for three radii: the initial, assumed constant; variable, estimating the radius with the correlations published for each fruit; and variable, calculating the radius with the generalized correlation developed in this work. The RMSE between the experimental data and the predictions by the kinetic model were between 0.321 and 0.562; 0.021 and 0.111; and 0.020 and 0.093, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

superficial area of the fruit per unit volume, m−1

A 0 :

initial superficial area of the fruit per unit volume, m−1

A p :

projected sample area, m2

a v :

particle surface area per unit volume, m−1

D :

effective diffusion coefficient, m2 s−1

d a :

equivalent diameter of the projected sample area, m

k :

Heywood shape factor, dimensionless

R :

sample radius, m

RMSE:

root mean squared error

t :

time, s

V :

volume of the fruit, m3

V 0 :

initial volume of the fruit, m3

X :

water content of the fruit, kg kg−1

X*:

dimensionless water content

X e :

equilibrium water content of the fruit, kg kg−1

X 0 :

initial water content of the fruit, kg kg−1

References

  • Arnosti, S., Jr., Freire, J. T., & Sartori, D. J. M. (2000). Analysis of shrinkage phenomenon in Brachiaria brizantha seeds. Drying Technology, 18(6), 1339–1348. doi:10.1080/07373930008917780.

    Article  Google Scholar 

  • Becker, H. A. (1959). A study of diffusion in solids of arbitrary shape, with application to the drying of the wheat kernel. Journal of Applied Polymer Science, 1(2), 212–226. doi:10.1002/app.1959.070010212.

    Article  Google Scholar 

  • Calli Pacco, H., Menegalli, F. C. (2004) Drying of sliced figs of “gigante de valinhos” variety (Fícus carica l). Drying 2004—Proceedings of the 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, 22-25 August, vol. C, pp. 1851–1858.

  • Falade, K. O., & Abbo, E. S. (2007). Air drying and rehydration characteristics of date palm (Phoenix dactylifera L.) fruits. Journal of Food Engineering, 79(2), 724–730. doi:10.1016/j.jfoodeng.2006.01.081.

    Article  Google Scholar 

  • Hatamipour, M. S., & Mowla, D. (2002). Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineering, 55(3), 247–252. doi:10.1016/S0260-8774(02)00082-1.

    Article  Google Scholar 

  • Hatamipour, M. S., & Mowla, D. (2003). Correlations for shrinkage, density and diffusivity for drying of maize and green peas in a fluidized bed with energy carrier. Journal of Food Engineering, 59(2–3), 221–227. doi:10.1016/S0260-8774(02)00461-2.

    Article  Google Scholar 

  • Leiva Díaz, E., Giannuzzi, L., & Giner, S. A. (2009). Apple pectic gel produced by dehydration. Food Bioprocess Technology, 2(2), 194–207. doi:10.1007/s11947-007-0035-9.

    Article  Google Scholar 

  • Márquez, C. A., De Michelis, A., & Giner, S. A. (2006). Drying kinetics of rose hip fruits (Rosa eglanteria L.). Journal of Food Engineering, 77(3), 566–574. doi:10.1016/j.jfoodeng.2005.06.071.

    Article  Google Scholar 

  • Martynenko, A. I. (2008). Porosity Evaluation of Ginseng Roots from Real-Time Imaging and Mass Measurements. Food Bioprocess Technol. doi:10.1007/s11947-008-0158-7.

    Google Scholar 

  • Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology, 12(1–2), 279–294. doi:10.1080/07373930008917704.

    Article  Google Scholar 

  • Ochoa, M. R., Kesseler, A. G., Pirone, B. N., Márquez, C. A., & De Michelis, A. (2002a). Volume and area shrinkage during dehydration of whole sour cherry fruits (Prunus cerasus). Drying Technology, 20(1), 147–156. doi:10.1081/DRT-120001371.

    Article  Google Scholar 

  • Ochoa, M. R., Kesseler, A. G., Pirone, B. N., Márquez, C. A., & De Michelis, A. (2002b). Shrinkage during convective air drying of whole rose hip (Rosa rubiginosa L.) fruits. Lebensmittel-Wissenschaft und-Technologie, 35(5), 400–406.

    Article  CAS  Google Scholar 

  • Ochoa, M. R., Kesseler, A. G., Pirone, B. N., Márquez, C. A., & De Michelis, A. (2007). Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Journal of Food Engineering, 79, 657–661. doi:10.1016/j.jfoodeng.2006.02.025.

    Article  Google Scholar 

  • Panyawong, S., & Devahastin, S. (2007). Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. Journal of Food Engineering, 78(1), 151–161. doi:10.1016/j.jfoodeng.2005.09.012.

    Article  Google Scholar 

  • Raghavan, G. S. V., & Venkatachalapathy, K. (1999). Shrinkage of strawberries during microwave drying. Drying Technology, 17(10), 2309–2321. doi:10.1080/07373939908917685.

    Article  Google Scholar 

  • Ratti, C. (1994). Shrinkage during drying of foodstuffs. Journal of Food Engineering, 25, 91–105. doi:10.1016/0260-8774(94)90125-2.

    Article  Google Scholar 

  • Ratti, C., & Crapiste, G. H. (2008). Modeling of batch dryers for shrinkable biological materials. Food Bioprocess Technology. doi:10.1007/s11947-008-0129-z. In press.

    Google Scholar 

  • Schultz, E. L., Mazzuco, M. M., Machado, R. A. F., Bolzan, A., Quadri, M. B., & Quadri, M. G. N. (2007). Effect of pre-treatments on drying, density and shrinkage of apple slices. Journal of Food Engineering, 78(3), 1103–1110. doi:10.1016/j.jfoodeng.2005.12.024.

    Article  Google Scholar 

  • Sjöholm, I., & Gekas, V. (1995). Apple shrinkage upon drying. Journal of Food Engineering, 25, 123–130. doi:10.1016/0260-8774(94)00001-P.

    Article  Google Scholar 

  • Vullioud, M., Márquez, C. A., & De Michelis, A. (2004). Desorption isotherms for sweet and sour cherry. Journal of Food Engineering, 63(1), 15–19. doi:10.1016/S0260-8774(03)00277-2.

    Article  Google Scholar 

  • Vullioud, M., Márquez, C. A., & De Michelis, A. (2006). Equilibrium sorption isotherms and isosteric heat of rose hip fruits (Rosa eglanteria). International Journal of Food Properties, 9(4), 823–833.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank: Facultad de Ingeniería—Universidad Nacional del Comahue (Project FAIN-I125) and CONICET (Project PIP 5511) for financial support and to MIAG-CHUBUT and INTA AER El Bolsón for providing the raw material.

Author De Michelis is a Member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Michelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez, C.A., De Michelis, A. Comparison of Drying Kinetics for Small Fruits with and without Particle Shrinkage Considerations. Food Bioprocess Technol 4, 1212–1218 (2011). https://doi.org/10.1007/s11947-009-0218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0218-7

Keywords

Navigation